

Drainage Impact Assessment Land at Blackhillock, Keith

M03291-03_DG01| November 2024

WATER & ENVIRONMENTAL CONSULTANTS

[PAGE INTENTIONALLY BLANK]

DOCUMENT CONTROL

DOCUMENT FILENAME	M03291-03_DG01-02 Drainage Impact Assessment			
DOCUMENT REFERENCE	M03291-03_DG01-			
TITLE	Drainage Impact Assessment			
CLIENT	Blackhillock Flexpower Ltd			
CLIENT CONTACT	Ben Wlad (Noriker)			
PROJECT MANAGER	Phillip Duffy			
AUTHOR(S)	Iain Black, Michael Rea			
BRANCH	BELFAST Mossley Mill, Lower Ground (West), Carnmoney Road North, Newtownabbey BT36 5QA T: +44 (0) 28 9084 8694 W: <u>www.mccloyconsulting.com</u>			

REVISION HISTORY

Rev. Ref.	Date	Prep	Chk	App	Amendments	Reason for Issue
00	12/05/23	IB	MR	PD	Original	For Review
01	27/02/24	IB	MR	PD	Amendment to section 1.7: Private Water Supply, 2.1: Design Criteria 2.2.3 Drainage Design Amendment to Appendix B calculations Amendment to Appendix B Drainage strategy	For Planning
02	27/02/24	IB	PD	PD	Revised Layout	For Review
03	14/10/24	IB	PD	PD	Revised Layout	For Review
04	08/11/24	IB	PD	PD	Revised Layout	For Review
05	14/11/24	IB	PD	PD	-	For Review

DISTRIBUTION

Designat	Revision						
Recipient	00	1	2	3	4	5	6
FILE	\checkmark	\checkmark	\checkmark	\checkmark	~	~	
AGENT	~	✓	\checkmark	\checkmark	~	~	

CONTENTS

1	INTR	ODUCTION	.4
	1.1	TERMS OF REFERENCE	4
	1.2	STATEMENT OF AUTHORITY	4
	1.3	OBJECTIVE	4
	1.4	SITE LOCATION AND CONTEXT	4
	1.5	FLOOD RISK AND EXISTING DRAINAGE REGIME	6
	1.5.1	SEPA Flood Mapping	7
	1.6	GROUND CONDITIONS 1	0
	1.7	PRIVATE WATER SUPPLY 1	1
2	DESI	GN STATEMENT 1	3
	2.1	DESIGN CRITERIA	3
	2.1.1	Design Standard	3
	2.2	PROPOSED LAYOUT 1	3
	2.2.1	Discharge Strategy	3
	2.2.2	2 Effect of the Development 1	3
	2.2.3	3 Drainage Design 1	4
	2.3	WATER TREATMENT 1	4
	2.4	MAINTENANCE REQUIREMENTS 1	4

LIST OF TABLES

TABLE 2-1 COMPARISON OF UNMITIGATED SURFACE WATER RUNOFF RATES (PEAK [1HR] RUNOFF RATES)	14
TABLE 2-2 SITE DRAINAGE MAINTENANCE SCHEDULE	15

LIST OF FIGURES

5
6
7
8
9
. 10
. 11
. 12
-

APPENDICES

Appendix A Site Layout Appendix B Calculations Appendix C Drainage Layout Drawings

DISCLAIMER

This document has been prepared solely as a Drainage Impact Assessment for Blackhillock Flexpower Ltd at the instruction of the party named in this document control sheet. McCloy Consulting Ltd accepts no responsibility or liability for any use that is made of this document other than for the purposes for which it was originally commissioned and prepared, including by any third party.

The contents and format of this report are subject to copyright owned by McCloy Consulting Ltd save to the extent that copyright has been legally assigned by us to another party or is used by McCloy Consulting Ltd under licence. McCloy Consulting Ltd own the copyright in this report and it may not be copied or used without our prior written agreement for any purpose other than the purpose indicated in this report.

SUSTAINABILITY

As an environmental consultancy, McCloy Consulting takes its responsibility seriously to try to operate in a sustainable way. As part of this, we try to maintain a paperless office and will only provide printed copies of reports and drawings where specifically requested to do so. We encourage end users of this document to think twice before printing a hard copy - please consider whether a digital copy would suffice. If printing is unavoidable, please consider double sided printing. This report (excluding appendices) contains 21 pages of text - that's equivalent to a carbon footprint of approximately 88.2g CO2 when printed single sided.

MAPPING

Maps and figures in this report include OpenStreetMap background mapping licensed under the Open Data Commons Open Database Licence (ODbL) by the OpenStreetMap Foundation (OSMF). © OpenStreetMap contributors.

1 INTRODUCTION

1.1 Terms of Reference

This Drainage Assessment was commissioned by Blackhillock Flexpower Ltd to support a planning application for a battery storage site at lands at Blackhillock, Ketih.

The assessment will determine drainage characteristics and establish the means for safely disposing of surface water at the site.

1.2 Statement of Authority

McCloy Consulting is an independent environmental and water engineering consultancy specialising in drainage and SuDS design, drainage and hydrological assessments, river modelling and flood risk assessment. The practice has extensive experience in design and implementation of surface water management across the UK and Ireland.

This report and assessment have been prepared and reviewed by qualified professional civil engineers specialising in the fields of SuDS and drainage design and flood risk as required by Moray Council and SEPA. The key staff members involved in this project are as follows:

- Iain Black Msc BEng (Hons) Project Engineer with experience in the fields of flood risk and drainage and surface water management design.
- Michael Rea *MEng (Hons)* Senior Project Engineer specialising in the fields of drainage design, flood modelling and SuDS and surface water management design.
- Philip Duffy *BEng (Hons) CEng MIEI* Associate and Senior Engineer with expertise in infrastructure engineering and drainage and wastewater design, green infrastructure, and environmental improvement schemes.

1.3 Objective

The objective of this report is to demonstrate that the surface water drainage design provided meets the requirements of Moray Council and includes:

- An overview of the site context including land uses and geology.
- Confirmation of hydraulic parameters including the outgoing flow rates and stormwater storage calculations.
- An overview of the proposed drainage system; and
- Confirmation of maintenance arrangements.

1.4 Site Location and Context

The site is located at Blackhillock, South of Ketih at British National Grid Reference (343847.5,848741.1) and is currently a greenfield site.

The proposals include the construction of Battery Energy Storage Systems (BESS) with HV compound to the north of the site and associated (unbound) hard standing forming tracks between the battery containers to the south.

The site topography survey indicates the site slopes from west to east, with low points located on the Eastern site border. Ground levels within the site observed from survey data vary between 153-195m OD.

Figure 1-1 Existing Site

Figure 1-2 Proposed Site

1.5 Flood Risk and Existing Drainage Regime

Watercourses were identified from Scottish Environmental Protection Agency's (SEPA) online flood maps, OS mapping and using GIS routines on best available height data. An unnamed watercourse is located adjacent to the site which flows north easterly approximately 216m from the northern most point of the site to the Den Burn, as shown in Figure 1-3.

Figure 1-3 Site Hydrological Context

1.5.1 SEPA Flood Mapping

The site was reviewed against the Scottish Environmental Protection Agency's (SEPA) online flood maps^[1], indicating:

- The site is unaffected by known fluvial floodplains.
- The site is unaffected by 0.5% AEP surface water flood extent. lies adjacent to the sites eastern site border.

Figure 1-4 SEPA Fluvial Flood Map

Figure 1-5 SEPA Surface Water Flood Mapping¹

Flow routing analysis confirms that site runoff in its present state would tend to the southeast for the northern site, and northeast for the southern site. Both site flow paths tend towards the undesignated watercourse to the northeast of the site., uncontrolled runoff from the site and downstream of the site would drain as shown in the following figure. Development should allow for managed flow paths across the site per CIRIA document C635 – Designing for exceedance in urban drainage, to include ensuring that boundary conditions allow ingress and egress of surface water at identified flow routes.

¹¹ Flood Maps, 2021, Scottish Environmental Protection Agency, https://www.sepa.org.uk/environment/water/flooding/flood-maps/ [Accessed 07.09.22]

Figure 1-6 Overland Flow Paths

Due to the sites rural setting, no relevant Scottish Water sewerage / drainage infrastructure is anticipated in proximity to the site that would influence surface water flooding or cause flood risk from urban drainage failures.

1.6 Ground Conditions

A review of BGS geology data has been undertaken to inform this assessment. Underlying superficial geology based on BGS 1:50k mapping within site is indicated to be predominantly Devensian Till. An area of Alluvium comprising clay, silt, sand, and gravel is also noted to the east of the site as indicated in the following figure.

Figure 1-7 Superficial Geology

1.7 Private Water Supply

A review of the available online mapping for Private Water Supplies indicated the nearest downstream private water supply is approximately 2400m northeast of the site, at Seafield Avenue, Keith. Moray Development control confirms the location of a REG 2 spring located approximately 2367m. Category Reg 2 are supplies that are commercial (including private lets), or supply more than 50 people, while Category B are non-commercial that serve less than 50 people

Figure 1-8 Private Water Supplies

² Private Water Supply - Scotland - Dataset - Spatial Hub Scotland <u>https://data.spatialhub.scot/dataset/private_water_supply-is</u>

2 DESIGN STATEMENT

2.1 Design Criteria

2.1.1 Design Standard

The following criteria have been used to progress the design and are in line with Scottish Water requirements, Moray Council planning guidance³, and SEPA.

- Design to demonstrate that a 1 in 200-year return period plus climate change event can be accommodated without presenting a flood risk to site.
- The 200 peak rainfall intensity allowance climate change of +37% has been adopted based on the SEPA Climate Change Allowances for Flood Risk Assessments indicated on the Land Use Planning web portal⁴.
- Design to demonstrate that a 1 in 30-year return plus climate change can be accommodated without surcharging
- Design assumes that all unbound hardstanding areas are 60% impermeable, to offer conservative assessment of the attenuation requirements, infiltration has been assumed as zero.
- Ordinary storm water discharged is anticipated to be disposed to the watercourse southeast of the site at a flow limited to greenfield rate.
- Consideration of water quality management as part of the proposed drainage system.

In addition, it is assumed that:

- New hardstanding areas are to be attenuated to a greenfield rate, equated to 1 in 2 year (QBAR) calculated as 6.366l/s/ha.
- Drainage will not be eligible for adoption and will be privately maintained; therefore, Scottish Water internal design standards are not applicable.

2.2 Proposed Layout

2.2.1 Discharge Strategy

It has been established that the proposals for the site shall increase the extent of impermeable surfaces at the site which would result in an increase in runoff from the site. The current site is greenfield; all runoff presently tends to the undesignated watercourses east of the site. Hardstanding will be attenuated to greenfield rate (equated to QBAR). It is proposed to discharge surface water from the site to the watercourse to the east. Attenuation ponds are proposed serving the northern and southern portions of the site as separate sub catchments.

A swale along hardstanding areas is proposed to collect runoff and convey flows to the attenuation pond. Flow controls on the outlet of the attenuation ponds will restrict flows to the greenfield rate of 9.6 Lps and 16 Lps the northern and southern sub-catchments respectively.

A sluice gate is proposed downstream of the attenuation ponds which will cut-off runoff from the site in the event of a pollution incident or to prevent firewater runoff entering the natural site in line with COMAH guidelines.

2.2.2 <u>Effect of the Development</u>

The site is currently undeveloped greenfield. The proposed development will cause an increase in the impermeable area of the site and is likely to result in an increase to the rate and volume of runoff from the site when compared to the existing scenario if not mitigated.

³ Moray Council (April 2023) Moray Local Development Plan 2020. Available from http://www.moray.gov.uk/moray_standard/page_133431.html[Accessed: 2/8/2024]

⁴ SEPA. (October 2024). Climate Change Allowances for Flood Risk Assessment in Land Use Planning. Available from: https://scottishepa.maps.arcgis.com/apps/webappviewer/index.html?id=2ddf84e295334f6b93bd0dbbb9ad7417. [Accessed: 3/10/2024].

An estimated of unmitigated post-development runoff for the site has been made as part of this assessment. Runoff estimates are based on plans submitted as part of the present applicating. A comparison of existing and proposed runoff rates in litres per second is given in the following table.

Return Period	Existing Site (lps)	Proposed Site (lps)	Increase (lps)
1 in 1 year (1hr)	55.2	125.8	70.6
1 in 30 year (1hr)	115	341.2	226.2
1 in 200 year (1hr)	159.3	457.7	298.4

Table 2-1 Comparison of Unmitigated Surface Water Runoff Rates (Peak [1hr] Runoff Rates)

2.2.3 Drainage Design

Innovyze Microdrainage software has been utilised in the design process to establish the storage requirements based on the above design criteria. Calculations are included in Appendix B.

The stormwater drainage of the hardstanding at the proposed site will comprise of sustainable drainage features (SuDS). Runoff will be directed into water catchment ponds located on the northeast for the northern site, and a series of ponds along the southern border, with volumes 712m³ and a combined volume of 1583m³ respectively This will be discharged at greenfield rate pro-rata based on impermeable subcatchment area the drainage serves, equating to 9.6lps for the northern pond, and 16lps for the southern pond.

Runoff is restricted by a flow control, discharging downstream to an unnamed watercourse, eventually discharging to Den Burn.

The site presently slopes to the east, post development, uncontrolled runoff would similar drain easterly as indicated in Figure 1-6. Direct flood risk to adjacent lands will be mitigated by ensuring the control of runoff from the site up to a suitable flood protection measure as stipulated by SEPA (200yr rainfall including climate change).

The proposed drainage layout is included in Appendix C.

2.3 Water Treatment

To ensure best practice treatment of surface water within the drainage network the Simple Index Approach, as described in the CIRIA C753 SuDS Manual, has been used to provide an indication of the suitability of the system in mitigation of water quality risks to receiving waters.

The proposed development consists of battery energy storage systems and associated gravel access tracks is assessed as a low pollution hazard level per the CIRIA C753 SuDS Manual, Table 26.2. The SuDS manual indicates the following hazard indices attributed to this land use:

- Total Suspended Solids 0.5
- Heavy Metals 0.4
- Hydrocarbons 0.4

The proposed drainage features include retention ponds. Per CIRIA C753, Table 26.3, the mitigation indices of a pond would exceed the respective pollution hazard indices shown above. Therefore, the proposed features are suitable for the nature of the development in terms of pollution risk mitigation.

2.4 Maintenance Requirements

Drainage assets shall be the responsibility of the site operator to maintain. The developer shall put in place drainage management procedures as part of the overall facility management.

The following initial Maintenance Schedule indicates the required activities for the drainage system. Features requiring maintenance including the chambers are in accessible locations. A maintenance plan will be produced and should include:

Inlets, Outlets, P	ipework, Chambers and Cells	
Regular Maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly
	Remove debris and sediment from chambers and cells	Monthly for first six months, then quarterly or after significant storm
Remedial actions	Repair/rehabilitate where required	As required
Monitoring	Check all structures to ensure all is in good condition and operating as designed.	Annually
	(Flow control) check for evidence of blockage	Monthly or after significant storm.
	(Flow control) check for damage to components	Annually or after significant storm.
Swale		
Regular	Remove litter and debris	Monthly, as required
Maintenance	Cut grass – to retain grass height within specific design range.	Monthly, as required
	Manage other vegetation and remove nuisance plants	
	Inspect inlets, outlets, and overflows for blockages, and clear if required	Monthly
	Inspect filtration surfaces for ponding, compaction, silt accumulation, record areas where water is ponding for > 48 hours	Monthly, as required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly
Occasional Maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions if required	As required or if bare soil is exposed over 10% or more of the swale treatment area
Remedial Actions	Repair erosion or other damage by re-turfing or re- seeding	As required
	Relevel uneven surfaces and reinstate design level	As required

Table 2-2 Site Drainage Maintenance Schedule

	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of soil surface	As required
Attenuation basi	n,	
Regular	Remove litter and debris	Monthly
Maintenance	Cut grass for spillways and access routes. Cut grass: Meadow grass in and around basin.	Monthly (during growing season) or as required. Half yearly (spring / before nesting season and autumn)
Remedial	Re-seed areas of poor vegetation cover.	As required
Actions	Remove sediment from inlets, outlets and basin when required.	Every 5 years or as required
Monitoring	Check all structures to ensure all is in good conditions and operating as designed	Annually

Appendix A

Site Layout

Appendix B

Calculations

[Blackhilock, Ketih] M03291-03 14/10/2024

Purpose

PIMP

To estimate the indicative (1-hr) change in runoff rate on a site caused by the proposed development. Note that proposed / indicative runoff rates are outline only and rely on the routing equation within the Modified Rational and Wallingford methods; actual runoff rates may differ significantly dependant on the nature of the surface water drainage network proposed and should be determined using hydraulic modelling.

Existing Site	A1	A2	A3	A4	TOTAL
Roof	0				0 m ²
Bitmac / Paved / Hardstanding	0				0 m ²
					0 m ²
Proposed Site	A1	A2	A3	A4	TOTAL
Roof	5676				5676 m ²
Bitmac / Paved / Hardstanding	17719				17719 m ²
					23395 m ²
Site Details		_			A 0
Total Site Area	9.12	Ha			Part &
SAAR	887	mm	From FEH3		
SAAR4170	1092	mm	From FEH3		Alex S
UCWI	107	mm			x 32 10 2
IOH124 region	2		from map ->	5	ne generals (
SOIL	4		From WRAP n	naps 🖏	1 2 2 1
SOIL	0.45			Sal	- 1 2 2 Mrs)_
DEEPSTOR	0.31			Se.	and Der hand
Modified Rational Method (MR	M):				1 - Tom
··· ·· ··· ·· ·· ·· ·	Existing		Proposed		
Length (m)	335	m	335	m	From Site Maps
Impermeable Area (ha)	0.000	На	2.339	На	
Max Height	118.0	mAOD	118.0	mAOD	From Survey
Min Height	98.9	mAOD	98.9	mAOD	From Survey
DeltaH	19.145		19.100		
Slope (%)	5.71		5.70		
To (mins)	10.00		10.01		
re (mms)		-	-	-	
ARF	0.000		0.980		

100.000

%

PIMP	0.000 %	100.000 %
Percentage Runoff PR	0.45 %	81.79 %
Cv	0.00	0.82
Cr	1.3	1.3

0.000

Institute of Hydrology Report 124 (IoH 124) "Flood Estimation on Small Catchments" method

	Existing		Proposed	
Remaining Greenfield Area	9.12	Ha	6.78	Ha
% Greenfield	100.00	%	74.34	%

Existing Site - Peak (1-hr) Runoff Rates

Return Period	Permeable Runoff (IOH124) (lps)	Impermeable Runoff (MRM) (lps)	Total Runoff (lps)
1 in 2 year (1hr)	55.2	0.0	55.2
1 in 30 year (1hr)	115.0	0.0	115.0
1 in 100 year (1hr)	159.3	0.0	159.3

Proposed Site - Peak (1-hr) Runoff Rates

Return Period	Permeable Runoff (IOH124)	Impermeable Runoff (MRM)	Total Runoff
Return Feriod	(lps)	(lps)	(lps)
1 in 2 year (1hr)	35.7	90.1	125.8
1 in 30 year (1hr)	74.3	266.9	341.2
1 in 100 year (1hr)	102.9	354.7	457.7

Summary - Peak (1-hr) Runoff Rates

Return Period	Existing Site (lps)	Proposed Site (lps)	Increase (lps)	Increase (%)
1 in 2 year (1hr)	55.2	125.8	70.6	128%
1 in 30 year (1hr)	115.0	341.2	226.2	197%
1 in 100 year (1hr)	159.3	457.7	298.4	187%

Ву	Checked	Revision	Reason for Change	Date
IB	MR	1		04/05/2023
IB	MR	2	Revised Layout	28/06/2024
IB	MR	3	Revised Layout	14/10/2024

https://mccloyconsultingltd.sharepoint.com/sites/M03291ScotStabilityLtd03BlackhillockKetih/Shared Documents/General/05 Calcs/Drainage Assessment/24.09 layout/[_DA Calculation Sheets 37% CC,2yr Return 24.09.xls]5a - Mod Rational

McCloy Consulting Limited	ł					Page 1						
Mossley Mill		M03291-0	03									
Newtownabbey		North										
Co. Antrim						Micco						
Date 14/10/2024		Designed	d by IB									
File North pond 1.4 stand	dalo	Checked	by JD			Dialnage						
Innovyze Source Control 2019.1												
Summary of R	esults f	or 30 ye	ear Retur	n Period	(+37%)							
		-										
Storm M	lax Max	Max	Max	Max	Max S	Status						
Event Le	vel Depti	h Control	Overflow	Σ Outflow	Volume							
	m) (m)	(1/S)	(1/S)	(1/S)	(m ³)							
15 min Summer 156	.695 0.19	5 9.3	0.0	9.3	120.7	O K						
30 min Summer 156	.765 0.26	5 9.6	0.0	9.6	166.3	O K						
60 min Summer 156	.838 0.338	B 9.6	0.0	9.6	214.9	ОК						
120 min Summer 156	909 0.40	99.6 96	0.0	9.6	263.1 297 9	OK						
240 min Summer 156	.966 0.46	6 9.6	0.0	9.6	302.2	O K						
360 min Summer 156	.989 0.48	9 9.6	0.0	9.6	318.5	O K						
480 min Summer 157	.001 0.502	1 9.6	0.0	9.6	327.1	O K						
600 min Summer 157	.007 0.50	7 9.6	0.0	9.6	331.3	O K						
720 min Summer 157	.009 0.509	9 9.6	0.0	9.6	332.6	ОК						
960 min Summer 157	.005 0.503	5 9.6 7 9.6	0.0	9.6	329./ 313.8	OK						
2160 min Summer 156	.936 0.43	2 9.0 6 9.6	0.0	9.6	281.3	O K						
2880 min Summer 156	.886 0.38	6 9.6	0.0	9.6	247.3	O K						
4320 min Summer 156	.798 0.298	8 9.6	0.0	9.6	188.0	O K						
5760 min Summer 156	.733 0.233	3 9.5	0.0	9.5	145.1	O K						
7200 min Summer 156	.688 0.188	B 9.2	0.0	9.2	116.4	ОК						
10080 min Summer 156	647 0 14	J 9.0 7 8.4	0.0	9.0	98.8 90 5	OK						
15 min Winter 156	.718 0.218	, 0.4 8 9.4	0.0	9.4	135.7	0 K						
30 min Winter 156	.797 0.29	7 9.6	0.0	9.6	187.4	ОК						
Storm	Rain	Flooded	Discharge	Overflow '	Time-Peak							
Event	(mm/hr)	Volume	Volume	Volume	(mins)							
		(m³)	(m³)	(m³)								
15 min Com	r 60 500	0 0	101 6	0 0	0 5							
30 min Summe	r 48.638	0.0	172.2	0.0	20 30							
60 min Summe	r 32.389	0.0	235.2	0.0	66							
120 min Summe	r 20.978	0.0	305.5	0.0	124							
180 min Summe	r 16.152	0.0	353.2	0.0	182							
240 min Summe	r 13.392	0.0	390.7	0.0	236							
480 min Summe	r 8.482	0.0	449.2 495 4	0.0	298 366							
600 min Summe	r 7.314	0.0	534.1	0.0	434							
720 min Summe	r 6.479	0.0	567.8	0.0	504							
960 min Summe	r 5.350	0.0	625.1	0.0	644							
1440 min Summe	r 4.083	0.0	715.1	0.0	918							
2160 min Summe 2880 min Summe	r 3.113	0.0	823.2 904 ƙ	0.0	1320 1704							
4320 min Summe	r 1.954	0.0	1030.8	0.0	2424							
5760 min Summe	r 1.609	0.0	1136.0	0.0	3120							
7200 min Summe	r 1.383	0.0	1220.9	0.0	3816							
8640 min Summe	r 1.223	0.0	1294.5	0.0	4424							
10080 min Summe	r = 1.102	0.0	136.9	0.0	5152							
30 min Winte	r 48.638	0.0	193.5	0.0	20							
	©198	2-2019 I	nnovyze									

McCloy Consulting Limited	l					Page 2
Mossley Mill		M03291-0)3			
Newtownabbey		North				
Co. Antrim						Micco
Date 14/10/2024		Designed	d by IB			
File North pond 1.4 stand	lalo	Checked	by JD			Drainage
Innovyze		Source (Control 2	2019.1		
Summary of Re	esults f	or 30 ye	ar Retur	n Period	(+37응)	
Storm M	ax Max	Max	Max	Max	Max S	tatus
Event Le	vel Depti m) (m)	1 Control	Overflow	Σ Outflow $(1/s)$	Volume (m ³)	
(1		(1/5)	(1/5)	(1/5)	(111)	
60 min Winter 156	.880 0.380	9.6	0.0	9.6	243.0	O K
120 min Winter 156	.961 0.461	L 9.6	0.0	9.6	299.0	ОК
180 min Winter 157 240 min Winter 157	030 0 530	9.6 9.6	0.0	9.6	329.3	OK
360 min Winter 157	057 0 55	7 9.0 7 9.6	0.0	9.0	366 8	O K O K
480 min Winter 157	.066 0.566	5 9.6	0.0	9.6	373.7	O K
600 min Winter 157	.071 0.571	9.6	0.0	9.6	377.3	ОК
720 min Winter 157	.071 0.572	9.6	0.0	9.6	376.9	O K
960 min Winter 157	.059 0.559	9.6	0.0	9.6	368.5	0 K
1440 min Winter 157	.015 0.515	5 9.6	0.0	9.6	337.0	O K
2160 min Winter 156	.932 0.432	2 9.6	0.0	9.6	278.9	O K
2880 min Winter 156	.850 0.350	9.6	0.0	9.6	222.9	ОК
4320 min Winter 156	.724 0.224	9.5	0.0	9.5	139.6	OK
5760 min Winter 156	.639 U.13	9.0 9.0	0.0	9.0	9/./	OK
8640 min Winter 156	625 0 12	5 7.9	0.0	7.9	04.9 76 3	OK
10080 min Winter 156	.615 0.115	5 6.3	0.0	6.3	70.4	O K
Storm Event	Rain (mm/hr)	Flooded : Volume (m ³)	Discharge Volume (m ³)	Overflow ' Volume (m ³)	[ime-Peak (mins)	
		. ,				
60 min Winte	r 32.389	0.0	263.8	0.0	66	
120 min Winte	r = 20.978 r = 16.152	0.0	342.4	0.0	122	
240 min Winte	r = 13.392	0.0	437.9	0.0	236	
360 min Winte	r 10.259	0.0	503.5	0.0	344	
480 min Winte	r 8.482	0.0	555.2	0.0	396	
600 min Winte	r 7.314	0.0	598.5	0.0	472	
720 min Winte	r 6.479	0.0	636.3	0.0	550	
960 min Winte	r 5.350	0.0	700.4	0.0	704	
1440 min Winte	r 4.083	0.0	801.2	0.0	1002	
2160 min Winte 2880 min Winte	r 2567	0.0	922.2 1013 5	0.0	1412 1700	
4320 min Winte	r 1.954	0.0	1155.3	0.0	2468	
5760 min Winte	r 1.609	0.0	1272.5	0.0	3056	
7200 min Winte	r 1.383	0.0	1367.7	0.0	3752	
8640 min Winte	r 1.223	0.0	1450.2	0.0	4440	
10080 min Winte	r 1.102	0.0	1522.9	0.0	5144	
	©1983	2-2019 I	nnovyze			

McCloy Consulting Limited												
Mossley Mill		M0329	1-03									
Newtownabbey		North										
Co. Antrim						Micco						
Date 14/10/2024		Desig	ned by IE	3								
File North pond 1.4 s	standalo	. Check	ed by JD			Diamaye						
Innovyze		Sourc	e Control	2019.1								
Model Details												
Storage is Online Cover Level (m) 157.506												
Tank or Pond Structure												
Invert Level (m) 156.500												
Depth (m) Area (m²)	Depth (m) A	Area (m²)	Depth (m)	Area (m²)	Depth (m)	Area (m²)						
0.000 600.2	0.300	663.1	0.600	728.5	0.900	796.1						
0.100 620.6	0.400	684.6	0.700	750.8	1.000	819.1						
0.200 641.7	0.500	706.4	0.800	773.3	1.006	820.6						
<u>F</u>	lydro-Brake	<u>e® Optim</u>	um Outflo	ow Contro	1							
	Un	it Refere	nce MD-SHE	-0143-9600-	-1000-9600							
	Des	ign Head	(m)		1.000							
	Desig	n Flow (1	/s)		9.6							
		Flush-F Object	lo™ ive Minim	ise unstrea	alculated							
		Applicat	ion	The abouted	Surface							
	Su	mp Availa	ble		Yes							
	D	iameter (mm)		143							
Minimum O	utlet Pipe D	iameter ((m) mm)		225							
Suggest	ed Manhole D	iameter (mm)		1200							
	Control	Points	Head (n	n) Flow (1/	s)							
De	sign Point	(Calculate	ed) 1.00	0 9	.6							
		Flush-Fl	.o™ 0.30)2 9	.6							
Ме	an Flow over	Head Rar	108 0.6	- 8	.0							
-			<u> </u>									
The hydrological calcu	lations have	been bas	ed on the	Head/Discha	arge relatio	onship for the						
Hydro-Brake Optimum a Hydro-Brake Optimum® b	s specified. e utilised t	hen these	storage r	pe or contr outing cald	col device (culations w:	ill be						
invalidated				,								
Depth (m) Flow (l/s)	Depth (m) Fi	Low (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)						
0.100 5.2	1.200	10.5	3.000	16.1	7.000	24.2						
0.200 9.3	1.400	11.2	3.500	17.4	7.500	25.1						
	1.600	12.0	4.000	18.5	8.000	25.8						
0.500 9.2	2.000	13.3	5.000	19.0 20.6	9.000	27.4						
0.600 8.8	2.200	13.9	5.500	21.6	9.500	28.1						
0.800 8.6	2.400	14.5	6.000	22.5								
1.000 9.6	2.600	15.1	6.500	23.4								
	©1	982-2019	9 Innovyz	е								

McCloy Consulting Limited		Page 4
Mossley Mill	M03291-03	
Newtownabbey	North	
Co. Antrim		Mirro
Date 14/10/2024	Designed by IB	Desinado
File North pond 1.4 standalo	Checked by JD	Diamage
Innovyze	Source Control 2019.1	

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 157.506

McCloy Consul	ting Limited						Page 1
Mossley Mill							
Newtownabbey							
Co. Antrim							Micco
Date 14/10/20	24 10.52		Designe	d by Rem	otemodel		
File cascade	30 vr CASX		Checked	hv	OCCINOUCI		Drainage
Transverse	JUYI.CASA		Cauraa	Dy Control	2010 1		
тшоууге			Source	CONCLOI	2019.1		
	Coccodo Cum	omi of	Deculte	for con	th nend	1 CDCV	
	<u>Cascade Summ</u>	lary or	Results	IOT SOU	<u>ith pond</u>	L.SRCX	
	Unst	roam	Outflow	TO 0176	arflow To		
	Struct	tures	040110#				
	(1	None) so	uth pond :	2.SRCX	(None)		
s	torm Max	. Max	Max	Max	Max	Max	Status
E	vent Leve	l Dept	h Control	Overflow	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 m	in Summer 17/ 1	78 0 17	8 1 1	0 0	ЛЛ	29 1	O K
30 m	in Summer 174.2	240 0.240	0 5.3	0.0	5.3	39.4	0 K
60 m	in Summer 174.2	298 0.29	8 6.0	0.0	6.0	49.4	0 K
120 m	in Summer 174.3	344 0.34	4 6.5	0.0	6.5	57.5	0 K
180 m	in Summer 174.3	864 0.364	4 6.7	0.0	6.7	60.9	O K
240 m	in Summer 174.3	372 0.372	2 6.8	0.0	6.8	62.2	O K
360 m	in Summer 174.3	370 0.370	0 6.8	0.0	6.8	61.8	O K
480 m	in Summer 174.3	360 0.360	0 6.7	0.0	6.7	60.1	O K
720 m	iin Summer 174.3	24/ 0.34 23/ 0.33	/ 6.5 / 6.1	0.0	6.0	57.9	OK
960 m	in Summer 174.3	307 0.30'	- 0 7 6.1	0.0	6.1	51.0	0 K
1440 m	in Summer 174.2	262 0.262	2 5.6	0.0	5.6	43.3	0 K
2160 m	in Summer 174.2	212 0.212	2 4.9	0.0	4.9	34.9	0 K
2880 m	in Summer 174.1	78 0.17	8 4.4	0.0	4.4	29.1	O K
4320 m	in Summer 174.1	.35 0.13	5 3.7	0.0	3.7	21.9	O K
5760 m	in Summer 174.1	.12 0.112	2 3.2	0.0	3.2	18.1	O K
7200 m 8640 m	uin Summer 174.J	192 0 091 192 0 091	U 2.8 2 2.5	0.0	2.8	16.2 14 9	OK
0040 11	iiii bunnei 1/4.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 2.0	0.0	2.5	11.9	0 10
	Storm	Rain	Flooded 1	Discharge	Overflow 1	Cime-Peal	c
	Event	(mm/nr)	volume (m ³)	volume (m ³)	volume (m ³)	(mins)	
			(111)	()	()		
	15 min Summer	67.999	0.0	31.6	0.0	23	3
	30 min Summer	48.054	0.0	44.9	0.0	3	6
	60 min Summer	32.637	0.0	61.6	0.0	60	J
	180 min Summer	∠⊥.6U9 16 700	0.0	81./ Q5 2	0.0	1.20	± 8
	240 min Summer	13,958	0.0	90.2 105.6	0.0	164	ر 4
	360 min Summer	10.671	0.0	121.1	0.0	232	2
	480 min Summer	8.816	0.0	133.4	0.0	300	C
	600 min Summer	7.597	0.0	143.7	0.0	36	6
	720 min Summer	6.722	0.0	152.6	0.0	430)
-	960 min Summer	5.538	0.0	167.7	0.0	558	3
	160 min Summer	4.205 3 186	0.0	190.9 217 /	0.0	804 1169	± 8
2	2880 min Summer	2,613	0.0	237.7	0.0	153	2
4	320 min Summer	1.973	0.0	269.0	0.0	2248	8
5	5760 min Summer	1.618	0.0	294.6	0.0	294	4
7	200 min Summer	1.387	0.0	315.7	0.0	3672	2
8	640 min Summer	1.224	0.0	334.1	0.0	4408	3

McCloy Consulting Limited		Page 2
Mossley Mill		
Newtownabbey		
Co. Antrim		Micro
Date 14/10/2024 10:52	Designed by Remotemodel	Dcainago
File cascade 30yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	
<u>Cascade Summary of</u>	Results for south pond 1.SRCX	
Storm Max Ma Event Level Dep (m) (m	x Max Max Max Max St th Control Overflow Σ Outflow Volume) (1/s) (1/s) (1/s) (m ³)	atus

10080	min	Summer	174.086	0.086	2.3	0.0	2.3	13.9	ОК
15	min	Winter	174.199	0.199	4.7	0.0	4.7	32.6	ОК
30	min	Winter	174.269	0.269	5.6	0.0	5.6	44.4	ОК
60	min	Winter	174.335	0.335	6.4	0.0	6.4	55.9	ОК
120	min	Winter	174.385	0.385	6.9	0.0	6.9	64.5	ОК
180	min	Winter	174.403	0.403	7.1	0.0	7.1	67.6	ОК
240	min	Winter	174.406	0.406	7.1	0.0	7.1	68.2	ОК
360	min	Winter	174.394	0.394	7.0	0.0	7.0	66.0	ОК
480	min	Winter	174.374	0.374	6.8	0.0	6.8	62.5	ОК
600	min	Winter	174.352	0.352	6.6	0.0	6.6	58.7	ОК
720	min	Winter	174.330	0.330	6.4	0.0	6.4	55.0	ОК
960	min	Winter	174.291	0.291	5.9	0.0	5.9	48.2	ОК
1440	min	Winter	174.230	0.230	5.2	0.0	5.2	37.8	ОК
2160	min	Winter	174.171	0.171	4.3	0.0	4.3	28.0	ОК
2880	min	Winter	174.136	0.136	3.7	0.0	3.7	22.1	ОК
4320	min	Winter	174.102	0.102	2.9	0.0	2.9	16.6	ОК
5760	min	Winter	174.090	0.090	2.4	0.0	2.4	14.5	ОК
7200	min	Winter	174.081	0.081	2.1	0.0	2.1	13.1	ОК
8640	min	Winter	174.075	0.075	1.8	0.0	1.8	12.1	ОК
10080	min	Winter	174.070	0.070	1.6	0.0	1.6	11.3	ΟK

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)	
10080	min	Summer	1.101	0.0	350.5	0.0	5136	
15	min	Winter	67.999	0.0	35.4	0.0	24	
30	min	Winter	48.054	0.0	50.4	0.0	36	
60	min	Winter	32.637	0.0	69.0	0.0	62	
120	min	Winter	21.609	0.0	91.5	0.0	100	
180	min	Winter	16.790	0.0	106.7	0.0	138	
240	min	Winter	13.958	0.0	118.3	0.0	176	
360	min	Winter	10.671	0.0	135.7	0.0	250	
480	min	Winter	8.816	0.0	149.5	0.0	320	
600	min	Winter	7.597	0.0	161.0	0.0	388	
720	min	Winter	6.722	0.0	171.0	0.0	454	
960	min	Winter	5.538	0.0	187.8	0.0	584	
1440	min	Winter	4.205	0.0	213.9	0.0	832	
2160	min	Winter	3.186	0.0	243.5	0.0	1192	
2880	min	Winter	2.613	0.0	266.2	0.0	1540	
4320	min	Winter	1.973	0.0	301.3	0.0	2244	
5760	min	Winter	1.618	0.0	330.0	0.0	2944	
7200	min	Winter	1.387	0.0	353.6	0.0	3672	
8640	min	Winter	1.224	0.0	374.3	0.0	4408	
10080	min	Winter	1.101	0.0	392.7	0.0	5136	
			©1983	2-2019	Innovvze			

Mossley Mill Newtownabbey Co. Antrim Date 14/10/2024 10:52 File cascade 30yr.CASX Innovyze Checked by Innovyze Cascade Rainfall Details for south pond 1.SRCX Rainfall Model FSR Winter Storms Yes Return Period (years) 30 CV (Summer) 0.750 Region England and Wales CV (Winter) 0.840 M5-60 (mm) 15.600 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +37 Time Area Diagram Total Area (ha) 0.000 Time Area Diagram Total Area (ha) 0.253 Time (mins) Area From: To: (ha) 0 4 0.004 Time (mins) Area From: To: (ha) 0 4 0.084 8 12 0.085	McCloy Consulting Limited		Page 3
Newtownabbey Co. Antrim Date 14/10/2024 10:52 File cascade 30yr.CASX Innovyze Source Control 2019.1 Cascade Rainfall Details for south pond 1.SRCX Rainfall Model FSR Winter Storms Yes Return Period (years) 30 CV (Summer) 0.750 Region England and Wales CV (Winter) 0.840 M5-60 (mm) 15.600 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +37 Time Area Diagram Total Area (ha) 0.000 Time Area Diagram Total Area (ha) 0.253 Time (mins) Area From: To: (ha) 0 4 0.084 4 8 0.084 8 12 0.085	Mossley Mill		
Co. Antrim Designed by Remotemodel Designed by Remotemodel Checked by Innovyze Source Control 2019.1 Cascade Rainfall Details for south pond LSRCX Rainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Winter) 0.840 M5-60 (mm) 15.600 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +37 Time Area Diagram Total Area (ha) 0.000 Time Area Diagram Total Area (ha) 0.253 Time (mins) Area From: To: (ha) 0 A 0.008 Time (mins) Area Time (mins) Area From: To: (ha) 0 0 A 0.000 Time (mins) Area From: To: (ha) C A 0.	Newtownabbey		The second
Date 14/10/2024 10:52 Designed by Remotemodel Checked by Designed by Remotemodel Checked by Innovyze Source Control 2019.1 Gascade Soyr.CASX Source Control 2019.1 Checked by Gascade Rainfall Details for south pond 1.SRCX Rainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 15.600 Shortest Storm (mins) 1080 Summer Storms Yes Climate Change % +37 Time Area Diagram Total Area (ha) 0.000 Summer Storm (mins) Mage O 4 0.000 Time (mins) Area From: To: (ha) O 4 0.000 Time (mins) Area Total Area (ha) 0.08	Co. Antrim		Micro
File Cascade 30yF.CASX Checked by Innovyze Source Control 2019.1 Cascade Rainfall Details for south pond 1.SRCX Rainfall Model FSR Winter Storms Refion England and Wales Cv (Winner) 0.780 Region England and Wales Cv (Winner) 0.840 M5-60 (mm) 15.600 Shortest Storm (mins) 10080 Summer Storms Yes Climate Change % +37 Time Area Diagram Total Area (ha) 0.000 Time Area Diagram Total Area (ha) 0.253 Time (mins) Area From: To: (ha) 0 O 4 0.084 A 8 0.084 O 4 0.084	Date 14/10/2024 10:52	Designed by Remotemodel	Drainage
Introvyze Subtle Control 2019.1 Cascade Rainfall Details for south pond 1.SRCX Rainfall Model FR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Summer) 0.750 M-60 (mm) 15.600 Shortest Storm (mins) 15 Ratio R 0.250 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +37 Time Area Diagram Total Area (ha) 0.000 Time (mins) Area From: To: (ha) 0 4 0.000 Time (mins) Area From: To: (ha) 0 4 0.004 8 12 0.085	File cascade 30yr.CASX	Checked by	
Cascade Rainfall Details for south pond 1.SRCXRainfall ModelFSRWinter Storms YesReturn Period (years)30Cv (Summer) 0.750Region England and WalesCv (Winter) 0.840M5-60 (mm)15.600 Shortest Storm (mins) 1080Summer StormsYesClimate Change % +37Dime Area DiagramTime Area DiagramTotal Area (ha) 0.000Time Area DiagramO 4 0.000Time Area DiagramTotal Area (ha) 0.253Time (mins) AreaFrom: To: (ha)O 4 0.0844 8 0.0848 12 0.085	тшоууге	Source control 2019.1	
Rainfall ModelFSRWinter StormsYesReturn Period (years)30Cv (Summer) 0.750Region England and WalesCv (Winter) 0.840M5-60 (mm)15.600 Shortest Storm (mins)15Ratio R0.250 Longest Storm (mins)10080Summer StormsYesClimate Change %Time Area DiagramTotal Area (ha) 0.000Time (mins) AreaFrom:To:From:To:(ha)04 0.000Time Area DiagramTotal Area (ha) 0.253Time (mins) AreaFirom:From:To:(ha)2004 0.08448 0.084812 0.085	<u>Cascade Rainfall</u>	Details for south pond 1.SRCX	
Time Area DiagramTotal Area (ha) 0.000Time (mins) Area From: To: (ha)0 4 0.000Time Area DiagramTotal Area (ha) 0.253Time (mins) Area From: To: (ha)04 0.0844 8 0.0848 12 0.085	Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Yo 30 Cv (Summer) 0.75 and and Wales Cv (Winter) 0.85 15.600 Shortest Storm (mins) 1005 0.250 Longest Storm (mins) 1005 Yes Climate Change % +5	es 50 40 15 80 37
Total Area (ha) 0.000 Time (mins) Area From: To: (ha) 0 4 0.000 Time Area Diagram Total Area (ha) 0.253 Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) 0 4 0.084 4 8 0.084 8 12 0.085	Tin	ne Area Diagram	
Time (mins)AreaFrom:To:040	Tota	al Area (ha) 0.000	
0 4 0.000 <u>Time Area Diagram</u> Total Area (ha) 0.253 <u>Time (mins) Area</u> <u>From: To: (ha)</u> <u>From: To: (ha)</u> 0 4 0.084 4 8 0.084 8 12 0.085	Ti Fr	me (mins) Area om: To: (ha)	
Time Area DiagramTotal Area (ha) 0.253Time (mins) AreaTime (mins) AreaTime (mins) AreaFrom:To:(ha)From:To:(ha)040.084480.0848120.085		0 4 0.000	
Total Area (ha) 0.253Time (mins) Area From: To: (ha)Time (mins) Area From: To: (ha)040.084480.0848120.085	Tin	ne Area Diagram	
Time(mins)AreaTime(mins)AreaTime(mins)AreaFrom:To:(ha)(ha)From:To:(ha)040.084480.0848120.085	Tota	al Area (ha) 0.253	
0 4 0.084 4 8 0.084 8 12 0.085	Time (mins) Area Ti	me (mins) Area Time (mins) Area	
	0 4 0.084	4 8 0.084 8 12 0.085	
©1982-2019 Innovyze	©198	32-2019 Innovyze	

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micro
Date 14/10/2024 10:52	Designed by Remotemodel	Dcainago
File cascade 30yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	L

Cascade Model Details for south pond 1.SRCX

Storage is Online Cover Level (m) 175.500

Tank or Pond Structure

Invert Level (m) 174.000

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 160.0 0.500 180.0 1.000 200.0 1.500 220.0

Orifice Outflow Control

Diameter (m) 0.075 Discharge Coefficient 0.600 Invert Level (m) 174.000

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 175.500 $\,$

McCloy Consu	lting Lim	nited						Page 1
Mossley Mill								
Newtownabbey	7							
Co. Antrim								Micco
Date 14/10/2	024 10:52)		Designe	d by Rem	otemodel		
File cascade	30vr.CAS	x		Checked	bv			Drainage
				Source	Control	2019 1		
11110 V y 2 C				bource	00110101	2019.1		
	Cascade	Summar	v of	Results	for sou	th pond	2 SRCX	
	<u>oubouuc</u>	<u> </u>	<u>y 01</u>	1100 01 00	101 000	<u>pona</u>	<u></u>	
		Upstrea	m	Outf	low To	Overflow	То	
		Structur	es					
	5011	th pond	1 SRCX	south n	and 3 SRCX	(Non	۵)	
	500	chi polita		Souch p	5110 5.51(6/	(1101)		
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	n Control	Overflow	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min Summer	174.206	0.200	5 8.2	0.0	8.2	29.6	O K
30	min Summer	174.277	0.277	7 10.0	0.0	10.0	40.3	O K
60	min Summer	174.347	0.347	7 11.4	0.0	11.4	50.9	O K
120	min Summer	174.403	0.403	3 12.4	0.0	12.4	59.7	O K
180	min Summer	174.429	0.429	12.8	0.0	12.8	63.6	O K
360	min Summer	174.440	0.440	J 13.0 I 13.1	0.0	13.0	65.4 65.6	OK
480	min Summer	174.433	0.433	12.9	0.0	12.9	64.2	O K
600	min Summer	174.420	0.420	12.7	0.0	12.7	62.2	O K
720	min Summer	174.405	0.405	5 12.4	0.0	12.4	60.0	ОК
960	min Summer	174.376	0.376	5 11.9	0.0	11.9	55.4	O K
1440	min Summer	174.324	0.324	1 10.9	0.0	10.9	47.5	ОК
2160	min Summer	174.266	0.266	5 9.7	0.0	9.7	38.6	O K
2880	min Summer	174.223	0.223) 8./) 7.3	0.0	8.7	32.4 24 7	OK
5760	min Summer	174.144	0.144	1 6.4	0.0	6.4	20.6	0 K
7200	min Summer	174.131	0.131	L 5.6	0.0	5.6	18.6	O K
8640	min Summer	174.121	0.121	L 5.0	0.0	5.0	17.2	O K
	Storm	. I	Rain	Flooded	Discharge	Overflow	Time-Pea	k
	Event	. (n	m/hr)	Volume	Volume	Volume	(mins)	
				(m³)	(m³)	(m³)		
	15 min 9	ummer 6	7.999	0 0	63 0	0 0	2	4
	30 min S	ummer 4	8.054	0.0	89.6	0.0	3	6
	60 min S	ummer 3	2.637	0.0	123.1	0.0	6	2
	120 min S	ummer 2	1.609	0.0	163.2	0.0	9	8
	180 min S	ummer 1	6.790	0.0	190.4	0.0	13	2
	240 min S	ummer 1	3.958	0.0	211.1	0.0	16	6
	360 min S 480 min S	ummer 1	U.6/1 8 916	0.0	242.1 266 0	0.0	23	4
	600 min 9	ummer	7.597	0.0	∠00.8 287 4	0.0	30 36	8
	720 min S	ummer	6.722	0.0	305.2	0.0	43	4
	960 min S	ummer	5.538	0.0	335.2	0.0	56	2
	1440 min S	ummer	4.205	0.0	381.7	0.0	81	0
	2160 min S	ummer	3.186	0.0	434.8	0.0	117	2
	2880 min S	ummer	2.613	0.0	475.3	0.0	153	2
	4320 min S	ummer	1 610	0.0	537.8	0.0	224	8
	7200 min S	ummer	1.387	0.0	631.4	0.0	∠94 367	2
	8640 min S	ummer	1.224	0.0	668.2	0.0	440	8
			@1 ^ ^	0 0010	T			
			©198	2-2019	ınnovyze			

McCloy Consu	lting Lim:	ited						Page 2
Mossley Mill								
Newtownabbey								
Co. Antrim								Micco
Date 14/10/2	024 10:52			Designed	l by Remot	emodel		
File cascade	30vr.CAS	X		Checked	by			Drainage
Innovyze	4			Source (Control 20	19.1		
	Cascade	Summary	v of	Results	for south	pond 2	SRCX	
						<u> </u>		
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Deptl	n Control	Overflow Σ	Outflow	Volume	
		(m)	(m)	(1/s)	(l/s)	(l/s)	(m³)	
10080	min Summer	174.113	0.113	3 4.5	0.0	4.5	16.0	O K
15	min Winter	174.230	0.230	8.8	0.0	8.8	33.2	ОК
30	min Winter	174.310	0.310	10.6	0.0	10.6	45.3	0 K
60	min Winter	174.390	0.390	12.2	0.0	12.2	57.6	0 K
120	min Winter	174.450	0.450	13.2	0.0	13.2	67.1	O K
180	min Winter	174.475	0.475	5 13.6	0.0	13.6	70.9	O K
240	min Winter	174.482	0.482	2 13.7	0.0	13.7	72.0	O K
360	min Winter	174.472	0.472	2 13.6	0.0	13.6	70.5	0 K
480	min Winter	174.452	0.452	2 13.2	0.0	13.2	67.4	O K
600	min Winter	174.429	0.429	9 12.9	0.0	12.9	63.7	O K
720	min Winter	174.405	0.405	5 12.4	0.0	12.4	60.0	O K
960	min Winter	17/ 361	0 36	1 11 6	0 0	11 6	53 0	0 K

11.6

10.2

8.5

7.4

5.8

4.8

4.1

3.6

3.3

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

11.6

10.2

8.5

7.4

5.8

4.8

4.1

3.6

53.0

42.1

31.4

25.0

19.1

16.7

15.1

13.9

3.3 13.1

ΟK

ОК

ΟК

ΟK

ΟК

ΟK

ΟK

ΟК

ОК

960 min Winter 174.361 0.361

1440 min Winter 174.289 0.289

2160 min Winter 174.218 0.218

2880 min Winter 174.174 0.174

4320 min Winter 174.134 0.134

5760 min Winter 174.117 0.117

7200 min Winter 174.106 0.106

8640 min Winter 174.098 0.098

10080 min Winter 174.092 0.092

	Stor Even	m t	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m ³)	Overflow Volume (m ³)	Time-Peak (mins)
10080	min	Summer	1.101	0.0	700.9	0.0	5136
15	min	Winter	67.999	0.0	70.7	0.0	24
30	min	Winter	48.054	0.0	100.6	0.0	36
60	min	Winter	32.637	0.0	138.0	0.0	62
120	min	Winter	21.609	0.0	182.9	0.0	102
180	min	Winter	16.790	0.0	213.3	0.0	140
240	min	Winter	13.958	0.0	236.5	0.0	178
360	min	Winter	10.671	0.0	271.3	0.0	252
480	min	Winter	8.816	0.0	298.9	0.0	324
600	min	Winter	7.597	0.0	322.0	0.0	392
720	min	Winter	6.722	0.0	341.9	0.0	460
960	min	Winter	5.538	0.0	375.6	0.0	588
1440	min	Winter	4.205	0.0	427.7	0.0	840
2160	min	Winter	3.186	0.0	487.0	0.0	1196
2880	min	Winter	2.613	0.0	532.4	0.0	1556
4320	min	Winter	1.973	0.0	602.5	0.0	2248
5760	min	Winter	1.618	0.0	659.9	0.0	2952
7200	min	Winter	1.387	0.0	707.3	0.0	3680
8640	min	Winter	1.224	0.0	748.5	0.0	4416
10080	min	Winter	1.101	0.0	785.2	0.0	5120
-			@1 0.0 /	2-2010	Throwso		

McCloy Consulting Limited		Page 3
Mossley Mill		
Newtownabbey		1
Co. Antrim		Micro
Date 14/10/2024 10:52	Designed by Remotemodel	Drainage
File cascade 30yr.CASX	Checked by	
тшоууге	Source control 2019.1	
<u>Cascade Rainfall I</u>	Details for south pond 2.SRCX	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Y 30 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8 15.600 Shortest Storm (mins) 0.250 Longest Storm (mins) 100 Yes Climate Change * +	es 50 40 15 80 37
Tim	ne Area Diagram	
	al Area (ha) 0.000	
Ti Fra	me (mins) Area om: To: (ha)	
	0 4 0.000	
Tim	ne Area Diagram	
Tota	al Area (ha) 0.253	
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.084	4 8 0.084 8 12 0.085	
©198	2-2019 Innovyze	

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micro
Date 14/10/2024 10:52	Designed by Remotemodel	Dcainago
File cascade 30yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	L

Cascade Model Details for south pond 2.SRCX

Storage is Online Cover Level (m) 175.500

Tank or Pond Structure

Invert Level (m) 174.000

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 140.0 0.500 160.0 1.000 170.0 1.500 180.0

Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 174.000

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 175.500 $\,$

McCloy Consu	lting Limited						Page 1
Mossley Mill	-						
Newtownabbey	7						
Co. Antrim							Micco
Date 14/10/2	2024 10:53		Designe	d bv Rem	otemodel		
File cascade	30vr CASX		Checked	hv			Urainage
Innowyze			Source	Control	2010 1		
тшоууге			Source	CONCLOI	2019.1		
	Casaado Sum	naru of	Poculto	for sou	th nond	3 CDCV	
	<u>Cascade</u> sum	<u>llary or</u>	Results	s lor sou	<u>tii polla</u>	<u>J.SKCA</u>	
	Unst	roam	Outf	low To	Overflow	Ψo	
	Struc	tures	outr	10# 10	overriow	10	
	south por	nd 2.SRCX	south po	ond 4.SRCX	(Non	e)	
	south por	nd 1.SRCX					
	Storm Ma	x Max	Max	Max	Max	Max	Status
	Event Leve	el Depth	Control	Overflow	Σ Outflow	Volume	
	(m)) (m)	(l/s)	(l/s)	(1/s)	(m³)	
15	170	016 0 016	10.0	0.0	10.0	61 0	0. "
15	min Summer 170.	816 U.316 830 0 130) 10.8	0.0	10.8	61.U 95 3	OK
60	min Summer 171.	076 0.576	5 15.1	0.0	15.1	112.9	O K O K
120	min Summer 171.	214 0.714	17.0	0.0	17.0	141.2	0 K
180	min Summer 171.	279 0.779	17.8	0.0	17.8	154.8	O K
240	min Summer 171.	312 0.812	2 18.2	0.0	18.2	161.8	O K
360	min Summer 171.	346 0.846	5 18.6	0.0	18.6	169.1	O K
480	min Summer 171.	361 0.861	18.8	0.0	18.8	172.4	O K
600	min Summer 171.	364 0.864	18.8	0.0	18.8	172.9	OK
720	min Summer 1/1.	339 U.835 335 N 835	18.8	0.0	18.8	166 8	OK
1440	min Summer 171.	270 0.770) 17.7	0.0	17.7	153.0	O K
2160	min Summer 171.	169 0.669	16.4	0.0	16.4	131.8	0 K
2880	min Summer 171.	080 0.580	15.2	0.0	15.2	113.7	O K
4320	min Summer 170.	949 0.449	13.2	0.0	13.2	87.4	O K
5760	min Summer 170.	863 0.363	3 11.7	0.0	11.7	70.2	O K
7200	min Summer 170.	800 0.300 754 0.257	10.4	0.0	10.4	5/.8	OK
0040	mini Summer 170.	/34 0.234	9.4	0.0	9.4	40.0	0 1
	Storm	Rain	Flooded	Discharge	Overflow !	Time-Peal	k
	Event	(mm/hr)	Volume	Volume	Volume	(mins)	
			(m³)	(m³)	(m³)		
	15 min Summer	67 999	0 0	124 R	0 0	2	6
	30 min Summer	48.054	0.0	177.5	0.0	4	0 0
	60 min Summer	32.637	0.0	243.9	0.0	6	8
	120 min Summer	21.609	0.0	323.5	0.0	12	4
	180 min Summer	16.790	0.0	377.3	0.0	18	0
	240 min Summer	13.958	0.0	418.3	0.0	21	0
	360 min Summer	LU.671	0.0	479.9	0.0	272	2
	400 min Summer	Ŭ.Ŭ⊥Ŭ 7 507	0.0	5∠8.8 569 6	0.0	33	о б
	720 min Summer	6.722	0.0	604.9	0.0	47:	2
	960 min Summer	5.538	0.0	664.4	0.0	60	6
	1440 min Summer	4.205	0.0	756.5	0.0	86	8
	2160 min Summer	3.186	0.0	861.7	0.0	124	0
	2880 min Summer	2.613	0.0	942.1	0.0	160	0
	4320 min Summer	1.973	0.0	1066.0	0.0	232	
	7200 min Summer	1 387	0.0	1251 5	0.0	301	4
	8640 min Summer	1.224	0.0	1324.5	0.0	444	- 0
1							

McCloy Consulting Limited		Page 2
Mossley Mill		
Newtownabbey		
Co. Antrim		Micro
Date 14/10/2024 10:53	Designed by Remotemodel	Desinado
File cascade 30yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	
Cascade Summary of	Results for south pond 3.SRCX	

Storn Event	n E	Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Overflow (l/s)	Max Σ Outflow (l/s)	Max Volume (m³)	Status
10080 min	Summer	170.722	0.222	8.7	0.0	8.7	42.6	ОК
15 min	Winter	170.854	0.354	11.5	0.0	11.5	68.5	ОК
30 min	Winter	170.992	0.492	13.9	0.0	13.9	95.9	ОК
60 min	Winter	171.146	0.646	16.1	0.0	16.1	127.1	ОК
120 min	Winter	171.303	0.803	18.1	0.0	18.1	159.9	ОК
180 min	Winter	171.380	0.880	19.0	0.0	19.0	176.3	ОК
240 min	Winter	171.417	0.917	19.4	0.0	19.4	184.3	ОК
360 min	Winter	171.448	0.948	19.8	0.0	19.8	191.0	ОК
480 min	Winter	171.456	0.956	19.9	0.0	19.9	192.9	ОК
600 min	Winter	171.448	0.948	19.8	0.0	19.8	191.0	ОК
720 min	Winter	171.429	0.929	19.6	0.0	19.6	187.0	O K
960 min	Winter	171.377	0.877	19.0	0.0	19.0	175.6	ОК
1440 min	Winter	171.257	0.757	17.6	0.0	17.6	150.3	ОК
2160 min	Winter	171.100	0.600	15.5	0.0	15.5	117.7	O K
2880 min	Winter	170.982	0.482	13.7	0.0	13.7	94.0	O K
4320 min	Winter	170.834	0.334	11.1	0.0	11.1	64.5	ΟK
5760 min	Winter	170.750	0.250	9.3	0.0	9.3	48.1	ОК
7200 min	Winter	170.700	0.200	8.1	0.0	8.1	38.4	O K
8640 min	Winter	170.668	0.168	7.2	0.0	7.2	32.2	ΟK
10080 min	Winter	170.647	0.147	6.5	0.0	6.5	28.1	ОК

	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Overflow Volume (m ³)	Time-Peak (mins)	
10080	min Summ	ner 1.101	0.0	1389.3	0.0	5152	
15	min Wint	er 67.999	0.0	140.1	0.0	26	
30	min Wint	er 48.054	0.0	199.2	0.0	39	
60	min Wint	er 32.637	0.0	273.4	0.0	68	
120	min Wint	er 21.609	0.0	362.5	0.0	122	
180	min Wint	er 16.790	0.0	422.7	0.0	178	
240	min Wint	er 13.958	0.0	468.7	0.0	228	
360	min Wint	er 10.671	0.0	537.7	0.0	286	
480	min Wint	er 8.816	0.0	592.4	0.0	360	
600	min Wint	er 7.597	0.0	638.1	0.0	434	
720	min Wint	er 6.722	0.0	677.7	0.0	506	
960	min Wint	er 5.538	0.0	744.4	0.0	644	
1440	min Wint	er 4.205	0.0	847.7	0.0	908	
2160	min Wint	er 3.186	0.0	965.3	0.0	1280	
2880	min Wint	er 2.613	0.0	1055.3	0.0	1640	
4320	min Wint	er 1.973	0.0	1194.3	0.0	2336	
5760	min Wint	er 1.618	0.0	1308.0	0.0	3040	
7200	min Wint	er 1.387	0.0	1401.8	0.0	3744	
8640	min Wint	er 1.224	0.0	1483.6	0.0	4448	
10080	min Wint	er 1.101	0.0	1556.5	0.0	5152	
		©1 98	2-2019	Innovyze			

McCloy Consulting Limited		Page 3
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:53	Designed by Remotemodel	Desinado
File cascade 30yr.CASX	Checked by	Diamaye
Innovyze	Source Control 2019.1	
<u>Cascade Rainfall</u>	Details for south pond 3.SRCX	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms Ye 30 Cv (Summer) 0.75 and and Wales Cv (Winter) 0.84 15.600 Shortest Storm (mins) 1 0.250 Longest Storm (mins) 1008 Yes Climate Change % +3	es 50 10 5 30 37
Tin	ne Area Diagram	
Tota	al Area (ha) 0.497	
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.165	4 8 0.166 8 12 0.166	
©198	32-2019 Innovyze	

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Mirro
Date 14/10/2024 10:53	Designed by Remotemodel	Desinado
File cascade 30yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	

Cascade Model Details for south pond 3.SRCX

Storage is Online Cover Level (m) 172.000

Tank or Pond Structure

Invert Level (m) 170.500

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²)

0.000 190.0 0.500 200.0 1.000 220.0 1.500 240.0

Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 170.500

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 172.000

McCloy Consu	ulting Lim	nited						Page 1
Mossley Mill	L							
Newtownabbey	2							100 A
Co. Antrim								Micco
Date 14/10/2	2024 10:53	}		Designe	d by Rem	otemodel		
File cascade	e 30yr.CAS	SX		Checked	by			Diamage
Innovyze				Source	Control	2019.1		
_								
	<u>Cascade</u>	Summa	ry of	Results	s for sou	ith pond	4.SRCX	
		Upstre	am	Outf	low To	Overflow	То	
		Structu	IES					
	sou sou sou	th pond th pond th pond	3.SRCX 2.SRCX 1.SRCX	south po	ond 5.SRCX	(Non	e)	
		F		-				
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Lever (m)	Depti (m)	(1/s)	(1/s)	(1/s)	(m ³)	
		()	()	(-, 5)	(-, 5)	(1,5)	···· /	
15	min Summer	163.24	5 0.24	5 9.2	0.0	9.2	35.5	ОК
30	min Summer	163.34	3 U.343 9 0 /5	5 11.3 9 12.2	0.0	11.3 12.2	50.3 68 /	OK
120	min Summer	163.59	5 0.45	5 15.4	0.0	15.4	90.2	0 K
180	min Summer	163.68	0 0.68	0 16.6	0.0	16.6	104.3	O K
240	min Summer	163.74	0 0.74	0 17.3	0.0	17.3	114.4	O K
360	min Summer	163.81	5 0.81	5 18.3	0.0	18.3	127.2	O K
480	min Summer	163.84	6 0.84) 8 0 85)	0 18.6 8 18.8	0.0	18.6	132.7 134 7	OK
720	min Summer	163.86	3 0.86	3 18.8	0.0	18.8	135.7	0 K
960	min Summer	163.86	3 0.863	3 18.8	0.0	18.8	135.6	0 K
1440	min Summer	163.83	8 0.83	8 18.5	0.0	18.5	131.3	0 K
2160	min Summer	163.77	4 0.77	4 17.8 1 16.9	0.0	17.8	120.3	OK
4320	min Summer	163.57	0.570	10.0 15.0	0.0	15.0	86.2	0 K
5760	min Summer	163.47	0 0.47	0 13.5	0.0	13.5	70.2	O K
7200	min Summer	163.39	4 0.394	4 12.2	0.0	12.2	58.2	O K
								_
	Storm Event	1 · · · /	Rain	Flooded	Volume	Volume	Time-Pea	ĸ
	Lvent	. (,,	(m ³)	(m ³)	(m ³)	(11113)	
	15 min o	11mm ~~~	67 000	0 0	150 0	0 0	0	3
	30 min S	Summer	48.054	0.0	216.5	0.0	12	0
	60 min S	ummer	32.637	0.0	298.3	0.0	15	2
	120 min S	ummer	21.609	0.0	395.7	0.0	20	0
	180 min S	ummer	16.790	0.0	461.5	0.0	24	0
	360 min S	ummer	10.671	0.0	587.1	0.0	∠ / 36	8
	480 min S	ummer	8.816	0.0	647.0	0.0	47	4
	600 min S	ummer	7.597	0.0	696.9	0.0	53	0
	720 min S	ummer	6.722	0.0	740.1	0.0	59	0
	960 min S 1440 min S	ummer	2.538	0.0	813.U 925 ƙ	0.0	71 96	∠ 0
	2160 min S	Summer	3.186	0.0	1054.7	0.0	133	6
	2880 min S	ummer	2.613	0.0	1153.1	0.0	170	4
	4320 min S	ummer	1.973	0.0	1304.5	0.0	242	0
	5760 min S	ummer	1.618	0.0	1429.5	0.0	312	0
	7200 MITH 2	ullillet	1.30/	0.0	1332.0	0.0	302	7
			©198	2-2019	Innovyze			

McCloy Consulting L	imited						Page 2
Mossley Mill							
Newtownabbey							10 m
Co Antrim							
Data 14(10/2024 10)	E O		Deelane	l la se Dama	+] -]		MICLO
Date 14/10/2024 10:	53		Designed	, by Remo	otemodel		Drainage
File cascade 30yr.C	ASX		Checked	bу			brainiage
Innovyze			Source (Control 2	2019.1		
Casca	de Summary	<u>y of</u>	<u>Results</u>	for sout	<u>th pond 4</u>	.SRCX	
Storm	Max	Max	Max	Max	Max Nove floor	Max S	Status
Event	(m)	Deptr (m)	(1/e)	(1/e)	2 OUTTIOW	(m ³)	
	(111)	(111)	(1/3)	(1/3)	(1/3)	(111)	
8640 min Summ	er 163.337	0.337	11.2	0.0	11.2	49.3	O K
10080 min Summ	er 163.294	0.294	10.3	0.0	10.3	42.9	O K
15 min Wint	er 163.274	0.274	9.9	0.0	9.9	39.8	O K
30 min Wint	er 163.382	0.382	12.0	0.0	12.0	56.3	ОК
60 min Wint	er 163.510	0.510	14.2	0.0	14.2	76.6	O K
120 min Wint	er 163.661	0.661	16.3	0.0	16.3	101.1	OK
180 min Wint	er 163./55	0./55) 1/.5	0.0	1/.5	120 4	OK
240 IIIII WING	er 163.021	0.821	. 10.3 / 19.3	0.0	10.3	1/3 3	OK
480 min Wint	er 163.907	0.907	19.3	0.0	19.3	151 1	O K O K
600 min Wint	er 163.963	0.963	19.9	0.0	19.9	153.2	O K
720 min Wint	er 163.962	0.962	19.9	0.0	19.9	153.2	O K
960 min Wint	er 163.951	0.951	19.8	0.0	19.8	151.1	ΟK
1440 min Wint	er 163.885	0.885	i 19.1	0.0	19.1	139.4	O K
2160 min Wint	er 163.753	0.753	17.5	0.0	17.5	116.7	O K
2880 min Wint	er 163.632	0.632	15.9	0.0	15.9	96.3	O K
4320 min Wint	er 163.452	0.452	13.2	0.0	13.2	67.2	O K
5760 min Wint	er 163.340	0.340	11.2	0.0	11.2	49.9	O K
7200 min Wint	er 163.271	0.271	9.8	0.0	9.8	39.4	0 K
8640 min Wint	er 163.225	0.225	8./	0.0	8./	32.5	OK
10080 min Wint	er 163.194	0.194	/.9	0.0	7.9	27.8	0 K
Sto	rm R	ain	Flooded	Discharge	Overflow 1	lime-Peak	c .
Eve	nt (m	m/hr)	Volume	Volume	Volume	(mins)	
			(m³)	(m³)	(m³)		
8640 min	Summer	1.224	0 0	1621 २	0 0	4528	3
10080 min	Summer 3	1.101	0.0	1700.4	0.0	5248	- }
15 min	Winter 6	7.999	0.0	170.7	0.0	100)
30 min	Winter 4	8.054	0.0	242.9	0.0	126	5
60 min	Winter 32	2.637	0.0	334.3	0.0	160)
120 min	Winter 22	1.609	0.0	443.4	0.0	210)
180 min	Winter 1	6.790	0.0	517.1	0.0	250)
240 min	Winter 1	3.958	0.0	573.4	0.0	288	3
360 mii	Winter 1	0.671	0.0	657.8	0.0	366	
480 min	Winter	8.816	0.0	/24.9	0.0	472	<u> </u>
600 mii	i wincer	1.591	0.0	180.9	0.0	560)

720 min Winter

960 min Winter

1440 min Winter

2160 min Winter

2880 min Winter

4320 min Winter

8640 min Winter

10080 min Winter

5760 min Winter 1.618

7200 min Winter 1.387

6.722

5.538

4.205

3.186

1.973

1.224

1.101

2.613

829.3

910.9

1037.1

1181.5

1291.7

1461.6

1601.2

1716.0

1816.1

1905.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

©1982-2019 Innovyze

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

614

738

1002

1380

1736

2428

3120

3824

4504

5208

McCloy Consulting Limited		Page 3
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:53	Designed by Remotemodel	MILIU
File cascade 30vr.CASX	Checked by	Drainage
Innovyze	Source Control 2019.1	
<u>Cascade Rainfall</u>	Details for south pond 4.SRCX	
Rainfall Model	FSR Winter Storms Ye	s
Return Period (years)	30 Cv (Summer) 0.75	0
M5-60 (mm)	15.600 Shortest Storm (mins) 1	5
Ratio R	0.250 Longest Storm (mins) 1008	0
Summer Storms	Yes Climate Change % +3	7
Ti	me Area Diagram	
Tot	al Area (ha) 0.225	
Time (mins) Area T	ime (mins) Area Time (mins) Area	
From: To: (ha) Fr	com: 'I'o: (ha) From: To: (ha)	
	4 0 0.073 0 12 0.073	
©19	82-2019 Innovyze	

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micro
Date 14/10/2024 10:53	Designed by Remotemodel	Dcainago
File cascade 30yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	1

Cascade Model Details for south pond 4.SRCX

Storage is Online Cover Level (m) 164.500

Tank or Pond Structure

Invert Level (m) 163.000

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 140.0 0.500 160.0 1.000 180.0 1.500 200.0

Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 163.000

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 164.500 $\,$

Mossley Mill Newtownabbey Co. Antrim	
Newtownabbey Co. Antrim	
Co. Antrim	
Date 14/10/2024 10:53 Designed by Remotemodel	
File cascade 30yr.CASX Checked by	nage
Innovyze Source Control 2019.1	
<u>Cascade Summary of Results for south pond 5.SRCX</u>	
Structures	
south pond 4.SRCX (None) (None)	
south pond 3.SRCX	
south pond 2.SRCX south pond 1.SRCX	
Storm Max Max Max Max Max Max Status	
Event Level Depth Control Overflow Σ Outflow Volume (m) (m) (1/s) (1/s) (1/s) (m ³)	
15 min Summer 156.929 0.129 8.7 0.0 8.7 33.6 O K	
30 min Summer 156.984 0.184 10.9 0.0 10.9 40.3 0 K	
120 min Summer 157.055 0.255 14.3 0.0 14.3 67.0 0 K	
180 min Summer 157.119 0.319 15.0 0.0 15.0 84.0 O K	
240 min Summer 157.172 0.372 15.4 0.0 15.4 98.1 O K	
360 min Summer 157.251 0.451 15.8 0.0 15.8 119.2 O K	
480 min Summer 157.308 0.508 15.9 0.0 15.9 134.6 O K	
720 min Summer 157.374 0.574 16.0 0.0 16.0 152.4 OK	
960 min Summer 157.395 0.595 16.0 0.0 16.0 158.3 O K	
1440 min Summer 157.373 0.573 16.0 0.0 16.0 152.4 O K	
2160 min Summer 157.316 0.516 15.9 0.0 15.9 136.7 O K	
2880 min Summer 157.249 0.449 15.8 0.0 15.8 118.8 O K	
4320 min Summer 157.128 0.328 15.1 0.0 15.1 80.5 0 K	
7200 min Summer 156.992 0.192 13.2 0.0 13.2 50.2 O K	
Storm Dain Flooded Discharge Overflow Wine-Deak	
Event. (mm/br) Volume Volume Volume (mins)	
(m^3) (m^3) (m^3)	
15 min Summer 67 999 00 165 3 00 152	
30 min Summer 48.054 0.0 236.5 0.0 181	
60 min Summer 32.637 0.0 328.4 0.0 218	
120 min Summer 21.609 0.0 436.0 0.0 322	
180 min Summer 16.790 0.0 508.7 0.0 390	
240 min Summer 13.958 0.0 564.2 0.0 450	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
600 min Summer 7.597 0.0 768.7 0.0 730	
720 min Summer 6.722 0.0 816.4 0.0 810	
960 min Summer 5.538 0.0 896.7 0.0 964	
1440 min Summer 4.205 0.0 1020.5 0.0 1204	
2160 min Summer 3.186 0.0 1164.7 0.0 1548 2880 min Summer 2.612 0.0 1022.1 0.0 1022.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
5760 min Summer 1.618 0.0 1579.1 0.0 32.32	
7200 min Summer 1.387 0.0 1692.2 0.0 3896	
©1982-2019 Innovyze	

McCloy Consulting Limi	ted					Page 2
Mossley Mill						
Newtownabbey						
Co. Antrim						Micco
Date 14/10/2024 10:53		Designed	d by Remo	otemodel		
File cascade 30yr.CAS	Χ	Checked	by			Diamaye
Innovyze		Source (Control 2	2019.1		
Cascade	Summary of	Results	for sout	th pond 5	.SRCX	
Storm	Max Max	Max	Max	Max Novefiler	Max a	Status
Event	(m) (m)	(1/s)	(1/s)	(1/s)	(m ³)	
8640 min Summer	156.973 0.17	3 12.2	0.0	12.2	45.2	O K
15 min Winter	156.980 0.18	6 94	0.0	11.3 9.4	41.0 35.6	OK
30 min Winter	156.964 0.16	4 11.6	0.0	11.6	42.9	O K
60 min Winter	157.004 0.20	4 13.5	0.0	13.5	53.5	O K
120 min Winter	157.102 0.30	2 14.9	0.0	14.9	79.4	ОК
180 min Winter	157.183 0.38	3 15.5	0.0	15.5	101.0	ОК
240 min Winter	157.250 0.45	0 15.8	0.0	15.8	119.0	ОК
360 min Winter	157.352 0.55	2 16.0	0.0	16.0	146.7	ОК
480 min Winter	157.429 0.62	9 16.0	0.0	16.0	167.4	OK
720 min Winter	157 519 0 71	2 16.0 9 16.0	0.0	16.0	101 0	OK
960 min Winter	157.518 0.71	8 16.0	0.0	16.0	200 0	OK
1440 min Winter	157.494 0.69	4 16.0	0.0	16.0	185.3	O K
2160 min Winter	157.354 0.55	4 16.0	0.0	16.0	147.1	0 K
2880 min Winter	157.217 0.41	7 15.7	0.0	15.7	110.3	ОК
4320 min Winter	157.040 0.24	0 14.1	0.0	14.1	63.0	O K
5760 min Winter	156.975 0.17	5 12.4	0.0	12.4	45.8	O K
7200 min Winter	156.953 0.15	3 10.8	0.0	10.8	40.1	O K
8640 min Winter	156.939 0.13	9 9.7	0.0	9.7	36.3	OK
10080 min Winter	156.929 0.12	9 8.7	0.0	8./	33.1	OK
Storm	Rain	Flooded	Discharge	Overflow 1	[ime-Pea]	c
Event	(mm/hr)	Volume	Volume	Volume	(mins)	
		(m³)	(m³)	(m³)		
8640 min St	ummer 1.224	0.0	1790.6	0.0	4576	6
10080 min Si	ummer 1.101	0.0	1876.9	0.0	5250	6
15 min W	inter 67.999	0.0	186.0	0.0	158	3
30 min W:	inter 48.054	0.0	265.8	0.0	190)
60 min W	inter 32.637	0.0	368.3	0.0	252	2
120 min W	inter 21.609	0.0	488.8	0.0	352	2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	intor 16 700	0 0	570 0	0 0	100	2
240 min W	inter 16.790	0.0	570.2 632 4	0.0	428	3
240 min W 360 min W	inter 16.790 inter 13.958 inter 10.671	0.0	570.2 632.4 725.6	0.0 0.0 0.0	428 492 600	3 2)
240 min W 360 min W 480 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816	0.0 0.0 0.0	570.2 632.4 725.6 799.7	0.0 0.0 0.0 0.0	428 492 600 699	3 2 0 6
240 min W 360 min W 480 min W 600 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597	0.0 0.0 0.0 0.0 0.0	570.2 632.4 725.6 799.7 861.4	0.0 0.0 0.0 0.0 0.0	428 492 600 690 784	3 2 0 6 4
240 min W: 360 min W: 480 min W: 600 min W: 720 min W:	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 6.722	0.0 0.0 0.0 0.0 0.0 0.0	570.2 632.4 725.6 799.7 861.4 914.9	0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 690 784 868	3 2 0 5 4 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 6.722 inter 5.538	0.0 0.0 0.0 0.0 0.0 0.0 0.0	570.2 632.4 725.6 799.7 861.4 914.9 1004.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 696 784 868 101 8	3 2 5 4 3 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 5.38 inter 4.205	0.0 0.0 0.0 0.0 0.0 0.0 0.0	570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278	3 2 5 4 3 3 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 6.722 inter 5.538 inter 4.205 inter 3.186	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278 1608	3 2 5 4 3 3 3 3 3 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 6.722 inter 5.538 inter 4.205 inter 3.186 inter 2.613 inter 1 973		570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8 1426.4 1613.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278 1608 1932	3 2 2 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 6.722 inter 5.538 inter 4.205 inter 3.186 inter 3.186 inter 2.613 inter 1.973 inter 1.618		570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8 1426.4 1613.1 1768.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278 1608 1932 2559 3168	3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W	inter 16.790 inter 13.958 inter 10.671 inter 10.671 inter 8.816 inter 7.597 inter 6.722 inter 5.538 inter 3.186 inter 2.613 inter 1.973 inter 1.618 inter 1.618 inter 1.387		570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8 1426.4 1613.1 1768.8 1895.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278 1608 1932 2559 3168 3872	3 2 2 5 4 3 3 3 3 3 3 3 3 3 2 5 5 3 2
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2160 min W 2880 min W 4320 min W 5760 min W 8640 min W	inter 16.790 inter 13.958 inter 10.671 inter 8.816 inter 7.597 inter 6.722 inter 5.538 inter 3.186 inter 2.613 inter 1.973 inter 1.618 inter 1.618 inter 1.387 inter 1.224		570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8 1426.4 1613.1 1768.8 1895.6 2005.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278 1608 1932 2556 3168 3872 4520	3 2 2 5 4 3 3 3 3 3 2 5 5 3 2 2 5 3 2 2 5
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 2160 min W 2880 min W 4320 min W 5760 min W 8640 min W	inter 16.790 inter 13.958 inter 10.671 inter 10.671 inter 10.722 inter 5.538 inter 3.186 inter 2.613 inter 1.618 inter 1.618 inter 1.387 inter 1.224 inter 1.101		570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8 1426.4 1613.1 1768.8 1895.6 2005.9 2103.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 784 868 1018 1278 1608 1933 2555 3168 3872 4520	3 2 2 5 4 3 3 3 3 3 3 3 3 2 5 5 3 2 2 5 3 3
240 min W 360 min W 480 min W 600 min W 720 min W 960 min W 1440 min W 2880 min W 4320 min W 5760 min W 7200 min W 8640 min W	inter 16.790 inter 13.958 inter 10.671 inter 10.671 inter 10.671 inter 10.671 inter 10.671 inter 7.597 inter 5.538 inter 4.205 inter 3.186 inter 1.613 inter 1.618 inter 1.387 inter 1.224 inter 1.101		570.2 632.4 725.6 799.7 861.4 914.9 1004.9 1143.8 1304.8 1426.4 1613.1 1768.8 1895.6 2005.9 2103.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	428 492 600 699 784 868 1018 1278 1608 3168 3872 4520 5208	3 2 2 5 4 3 3 3 3 3 3 2 5 5 3 2 2 0 3

McCloy Consulting Limited		Page 3
Mossley Mill		
Newtownabbey		The second
Co. Antrim		Micro
Date 14/10/2024 10:53	Designed by Remotemodel	Drainage
TILE CASCAGE SUVI.CASA	Source Control 2019 1	
	Source control 2019.1	
<u>Cascade Rainfall</u>	Details for south pond 5.SRCX	
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Winter Storms Ye 30 Cv (Summer) 0.75 and and Wales Cv (Winter) 0.84 15.600 Shortest Storm (mins) 108 0.250 Longest Storm (mins) 1008	es 50 40 55 30
Summer Storms	Yes Climate Change % +	37
	le Area Diagram	
Tota	al Area (Na) U.IZY	
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.043	4 8 0.043 8 12 0.043	
©198	2-2019 Innovyze	

McCloy Consul	ting Lim	ited					Page 4
Mossley Mill							
Newtownabbey							
Co. Antrim							Micco
Date 14/10/202	24 10:53	}	Design	ed by Re	motemodel		
File cascade 3	30yr.CAS	X	Checke	d by			urainage
Innovyze	-		Source	Control	2019.1		
	Casca	ade Model	Details	<u>for sout</u>	h pond 5.8	SRCX	
		Storage is	Online Cove	er Level	(m) 158.800		
		Tar	nk or Pond	l Structu	ire		
		In	vert Level	(m) 156.8	00		
г	epth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) A	Area (m²)	
_	·····		- ··		- ··		
	0.000	260.0 270.0	1.000	280.0 290.0	2.000	300.0	
	0.000	2,010	1.000	20010			
	<u>H</u>	ydro-Brał	ke® Optimu	um Outflo	ow Control		
		U De	nit Referen sign Head (.ce MD-SHE m)	-0165-1600-2	2000-1600	
		Desi	gn Flow (1/	s)		16.0	
			Flush-Fl	OTM	Ca	alculated	
			Objecti	ve Minim	ise upstrear	n storage	
		_	Applicati	on		Surface	
		S	ump Availab	le m)		Yes 165	
		Tnv	Diameter (m	m)		156 800	
M	linimum Ou	tlet Pipe	Diameter (m	m)		225	
	Suggeste	ed Manhole	Diameter (m	m)		1500	
		Control	Points	Head (n	n) Flow (l/s)	
	De	sian Point	(Calculated	1) 2.00)0 16.	0	
	20	51911 101110	Flush-Flo	o™ 0.57	79 16.	0	
			Kick-Flo	b® 1.21	.6 12.	6	
	Me	an Flow ove	er Head Rang	ge	- 14.	0	
The hydrologic	cal calcul	lations hav	re been base	d on the	Head/Dischaı	rge relatio	onship for the
Hydro-Brake® (Optimum as	s specified	l. Should a	nother ty	pe of contro	ol device d	other than a
Hydro-Brake Op	otimum® be	e utilised	then these	storage r	outing calcu	ulations wi	lll be
invalidated							
Depth (m) Flo	w (l/s)	Depth (m) 1	Flow (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)
0.100	5.9	1.200	12.9	3.000	19.4	7.000	29.1
0.200	13.4	1.400	13.5	3.500	20.9	7.500	30.1
0.300	14.9 15 c	1.600	15 0	4.000	22.3	8.000	31.1
0.400	15 G	2 000 2 000	16 0	4.500	23.6	8.500 9 nnn	32.U 32 9
0.500	16 0	2.200	16 7	5 500	24.0	9.000	32.9 33 8
0.800	15 7	2 400	17 4	6 000	23.5	9.000	55.0
1.000	14.8	2.600	18.1	6.500	28.1		
	I				-		
		We	ir Overflo	<u>ow Contr</u>	<u>ol</u>		
Di	ischarge (Coef 0.544	Width (m)	0.500 Inve	ert Level (m	a) 158.800	
			1000 0010	Tara			
		C	1902-2019	TUUOAÄZ	e		

McCloy Consulting L:	imited						Page 1
Mossley Mill							
Newtownabbey							
Co Antrim							
Data 14/10/2024 10-1	5 5		Decim	ad br Dom	at amada	1	— MICrO
Date 14/10/2024 10.	~~ ~~			ец ру кеш	oceniode.	L	Drainage
File cascade 200yr.0	CASX		Checke	d by			Shannarge.
Innovyze			Source	Control	2019.1		
<u>Cascade</u> S	Summary	of Re	sults f	or south	pond 1	- 200.	<u>SRCX</u>
	Upstream		Outflow	ТО	Overflow	То	
s	tructure	S					
	()]	\h		200 000	()7	\	
	(None) south	pond 2 ·	- 200.SRCX	(NO	ne)	
Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Control (Overflow Σ	Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Summer	178.012	0.512	3.6	0.0	3.6	57.7	O K
30 min Summer	178.200	0.700	4.3	0.0	4.3	82.1	ОК
60 min Summer	170 501	0.896	4.9	0.0	4.9	109.5	OK
120 min Summer	178 663	1 163	5.6	0.0	5.4	1/9 9	O K O K
240 min Summer	178.701	1.201	5.7	0.0	5.7	156.0	Flood Risk
360 min Summer	178.733	1.233	5.7	0.0	5.7	161.0	Flood Risk
480 min Summer	178.746	1.246	5.8	0.0	5.8	163.2	Flood Risk
600 min Summer	178.748	1.248	5.8	0.0	5.8	163.4	Flood Risk
720 min Summer	178.741	1.241	5.8	0.0	5.8	162.4	Flood Risk
960 min Summer	178.716	1.216	5.7	0.0	5.7	158.3	Flood Risk
1440 min Summer	178.645	1.145	5.5	0.0	5.5	147.1	O K
2160 min Summer	170 421	1.034	5.2	0.0	5.2	129.9	O K
4320 min Summer	178 263	0.931	2.0 4.5	0.0	2.0 4.5	90 7	O K O K
5760 min Summer	178.138	0.638	4.1	0.0	4.1	73.9	0 K
7200 min Summer	178.042	0.542	3.8	0.0	3.8	61.4	0 K
8640 min Summer	177.968	0.468	3.5	0.0	3.5	52.1	O K
Sto	rm	Rain	Flooded	Discharge	Overflow	Time-H	?eak
Eve	nt	(mm/hr)	Volume	Volume	Volume	(min	s)
			(m³)	(m³)	(m³)		
15 min	Summor	00 703	0 0	60 5	0 0		25
30 min	Summer	72.140	0.0	87.7	0.0		39
60 min	Summer	49.794	0.0	121.6	0.0		66
120 min	Summer	33.271	0.0	162.5	0.0		124
180 min	Summer	25.831	0.0	189.2	0.0		180
240 min	Summer	21.369	0.0	208.8	0.0		214
360 min	Summer	16.115	0.0	236.2	0.0		278
480 min	Summer	13.191	0.0	257.8	0.0		344
600 min 720 min	Summer	11.2/8	0.0	275.5	0.0		414
/20 min 960 min	Summer	9.913 8 074	0.0	290.6 315 5	0.0		404 622
1440 min	Summer	6.024	0.0	353.1	0.0		894
2160 min	Summer	4.475	0.0	393.7	0.0	1	L284
2880 min	Summer	3.614	0.0	424.0	0.0	1	L672
4320 min	Summer	2.667	0.0	469.2	0.0	2	2420
5760 min	Summer	2.154	0.0	505.6	0.0	3	3120
7200 min	Summer	1.826	0.0	535.7	0.0		3832
8640 min	Summer	1.596	0.0	561.9	0.0	4	1584

McCloy Cons	sulting Li	.mited						Page 2
Mossley Mi	11							
Newtownabbe	ev							
Co. Antrim	-							Micco
Date 14/10,	/2024 10:5	5		Designe	ed by Rem	otemodel		
File cascad	de 200vr.C	ASX		Checked	d bv			Drainage
Throws				Source	Control	2019 1		
IIIIOVYZE				Source	CONCLOT	2019.1		
	Cascade S	ummarv	of Re	sults f	or south	nond 1 -	200	SBCX
		<u>uninar y</u>		SUICS I	<u>or souch</u>		200.	DICCA
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Control	Overflow Σ	Outflow '	Volume	
		(m)	(m)	(l/s)	(l/s)	(l/s)	(m³)	
10090	min Cummor	177 000	0 100	2 2	0 0	2 2	11 0	O K
10000	min Winter	179 069	0.409	3.2	0.0	3.2	44.9 6/ 9	OK
10	min Winter	178 276	0.300	J.O 1 5	0.0	J.0 4 5	04.0 92 /	OK
60	min Winter	178 493	0.770		0.0		123 7	0 K
120	min Winter	178 700	1 200	5 7	0.0	5 7	155 7	0 K
180	min Winter	178.796	1.296	5.9	0.0	5.9	171.3	Flood Risk
240	min Winter	178.841	1.341	6.0	0.0	6.0	178.8	Flood Risk
360	min Winter	178.867	1.367	6.0	0.0	6.0	183.2	Flood Risk
480	min Winter	178.878	1.378	6.1	0.0	6.1	185.0	Flood Risk
600	min Winter	178.873	1.373	6.1	0.0	6.1	184.1	Flood Risk
720	min Winter	178.858	1.358	6.0	0.0	6.0	181.6	Flood Risk
960	min Winter	178.813	1.313	5.9	0.0	5.9	174.1	Flood Risk
1440	min Winter	178.701	1.201	5.7	0.0	5.7	155.9	Flood Risk
2160	min Winter	178.534	1.034	5.2	0.0	5.2	129.9	O K
2880	min Winter	178.389	0.889	4.8	0.0	4.8	108.4	O K
4320	min Winter	178.166	0.666	4.2	0.0	4.2	77.5	O K
5760	min Winter	178.015	0.515	3.7	0.0	3.7	58.0	O K
7200	min Winter	177.910	0.410	3.2	0.0	3.2	45.1	0 K
8640	min Winter	177.835	0.335	2.9	0.0	2.9	36.2	0 K
10080	min Winter	177.781	0.281	2.6	0.0	2.6	30.0	0 K
	Stor	m	Rain	Flooded	Discharge	Overflow	Time-H	?eak
	Ever	it	(mm/hr)	Volume	Volume	Volume	(min	s)
				(m³)	(m³)	(m³)		

	Event		(mm/hr)	Volume	Volume	Volume	(mins)
				(m³)	(m³)	(m³)	
10080	min Sur	nmer	1.426	0.0	585.3	0.0	5256
15	min Wir	nter	99.703	0.0	67.8	0.0	25
30	min Wir	nter	72.140	0.0	98.3	0.0	39
60	min Wir	nter	49.794	0.0	136.2	0.0	66
120	min Wir	nter	33.271	0.0	182.0	0.0	122
180	min Wir	nter	25.831	0.0	212.0	0.0	178
240	min Wir	nter	21.369	0.0	233.8	0.0	232
360	min Wir	nter	16.115	0.0	264.5	0.0	292
480	min Wir	nter	13.191	0.0	288.7	0.0	368
600	min Wir	nter	11.278	0.0	308.6	0.0	446
720	min Wir	nter	9.913	0.0	325.5	0.0	522
960	min Wir	nter	8.074	0.0	353.4	0.0	672
1440	min Wir	nter	6.024	0.0	395.4	0.0	958
2160	min Wir	nter	4.475	0.0	441.0	0.0	1364
2880	min Wir	nter	3.614	0.0	474.9	0.0	1760
4320	min Wir	nter	2.667	0.0	525.6	0.0	2508
5760	min Wir	nter	2.154	0.0	566.3	0.0	3224
7200	min Wir	nter	1.826	0.0	600.0	0.0	3904
8640	min Wir	nter	1.596	0.0	629.3	0.0	4592
10080	min Wir	nter	1.426	0.0	655.6	0.0	5344

McClov Consulting Limited		Page 3
Mossley Mill		
Newtownabbey		14 A.
Co. Antrim		Micco
Date 14/10/2024 10:55	Designed by Remotemodel	Desinado
File cascade 200yr.CASX	Checked by	Diamaye
Innovyze	Source Control 2019.1	
<u>Cascade Rainfall Det</u>	ails for south pond 1 - 200.SRCX	
Rainfall Model Return Period (vears)	FSR Winter Storms Ye 200 Cy (Summer) 0.75	s N
Region Engla	and and Wales Cv (Winter) 0.84	0
M5-60 (mm)	15.600 Shortest Storm (mins) 1	5
Ratio R Summer Storms	0.250 Longest Storm (mins) 1008 Yes Climate Change % +3	0
	ies officie onange of is	,
<u></u>	ne Area Diagram	
Tota	al Area (ha) 0.326	
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.108	4 8 0.109 8 12 0.109	
<u>ଲ</u> ୀ ସନ	2-2019 Innovvze	
0190		

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:55	Designed by Remotemodel	Desinado
File cascade 200yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	1

Cascade Model Details for south pond 1 - 200.SRCX

Storage is Online Cover Level (m) 179.000

Tank or Pond Structure

Invert Level (m) 177.500

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 100.0 0.500 125.0 1.000 150.0 1.500 175.0

Orifice Outflow Control

Diameter (m) 0.050 Discharge Coefficient 0.600 Invert Level (m) 177.500

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 179.000

McCloy Consu	lting Lim	nited						Page 1	
Mossley Mill	-								
Newtownabbey	7								
Co. Antrim								Micro	
Date 14/10/2	2024 10:56	5		Designe	d by Rem	otemodel		Dcainago	
File cascade	Drainiage								
Innovyze Source Control 2019.1									
				1			000 05		
	ascade Su	<u>immary c</u>	DI Res	<u>sults ic</u>	<u>or soutn</u>	<u>pona 2 -</u>	200.SF		
	UF	ostream		o	utflow To	Ove	rflow To		
	Sti	ructures							
	south pon	d 1 - 20	0.SRCX	south po	ond 3 - 20	0.SRCX	(None)		
	Storm	Max	Mav	Mav	Max	Max	Max	Status	
	Event	Level	Depth	Control	Overflow	Σ Outflow	Volume	blatub	
		(m)	(m)	(1/s)	(l/s)	(1/s)	(m³)		
15	min Summer	174.292	0.292	2 10.3	0.0	10.3	42.6	ОК	
30	min Summer	174.400	0.400) 12.4	0.0	12.4	59.2	0 K	
60	min Summer	174.503	0.503	3 14.0	0.0	14.0	75.4	ОК	
120	min Summer	174.584	0.584	15.2	0.0	15.2	88.4	0 K	
180	min Summer	174.616	0.616	5 15.7	0.0	15.7	93.6	O K	
240	min Summer	174.625	0.625	15.8	0.0	15.8	95.2	0 K	
360	min Summer	174.615	0.615	5 15.7	0.0	15.7	93.4	O K	
480	min Summer	174.596	0.596) 15.4	0.0	15.4	90.3	OK	
600 720	min Summer	174.5/3	0.573	1 1 0	0.0	10.1	86./ 02 1	OK	
720	min Summer	174.551	0.551	. 14.0 1/11	0.0	14.0	03.1 76 1	OK	
1440	min Summer	174 436	0.307	13 0	0.0	13 0	64 7	O K O K	
2160	min Summer	174.358	0.358	3 11.6	0.0	11.6	52.6	0 K	
2880	min Summer	174.304	0.304	10.5	0.0	10.5	44.4	0 K	
4320	min Summer	174.235	0.235	5 9.0	0.0	9.0	34.0	O K	
5760	min Summer	174.194	0.194	7.9	0.0	7.9	27.9	O K	
7200	min Summer	174.166	0.166	5 7.1	0.0	7.1	23.8	O K	
8640	min Summer	174.148	0.148	6.5	0.0	6.5	21.1	O K	
	Stor		Rain	Flooded	Discharge	Overflow	Time-Dea	r	
	Event	. (n	m/hr)	Volume	Volume	Volume	(mins)		
			,,	(m ³)	(m ³)	(m ³)	(,		
	15 min 9	ummer ^c	9.703	0.0	107.0	0.0	2	3	
	30 min S	Summer 7	2.140	0.0	155.2	0.0	3	5	
	60 min S	ummer 4	9.794	0.0	215.6	0.0	6	0	
	120 min S	ummer 3	3.271	0.0	288.3	0.0	9	4	
	180 min S	ummer 2	5.831	0.0	335.8	0.0	12	8	
	240 min S	ummer 2	1.369	0.0	370.5	0.0	16	4	
	360 min S	ummer 1	6.115	0.0	419.1	0.0	23	2	
	480 min S	ummer 1	3.191	0.0	457.5	0.0	30	U	
	600 min S	ummer 1	L.2/8	0.0	488.9	0.0	36	0 2	
	960 min 9	ununer ummer	8.074	0.0	540 0	0.0	43 56	2	
	1440 min S	ummer	6.024	0.0	62.6.5	0.0	81	2	
	2160 min S	ummer	4.475	0.0	699.2	0.0	117	6	
	2880 min S	ummer	3.614	0.0	752.8	0.0	154	0	
	4320 min S	ummer	2.667	0.0	833.0	0.0	225	6	
	5760 min S	ummer	2.154	0.0	897.9	0.0	300	0	
	7200 min S	ummer	1.826	0.0	951.3	0.0	368	8	
	8640 min S	ummer	1.596	0.0	997.7	0.0	441	6	
			©198	2-2019	Innovyze				

McCloy Consulting Limited						Page 2
Mossley Mill						
Newtownabbey						
Co Antrim						
Data 14/10/2024 10.56		Dagionad	l br Domo	tomodol		MICIO
Date 14/10/2024 10:38	· · ·		и ру кешо	cemoder		Drainage
File cascade 200yr.CASX		Checked	by			
Innovyze		Source (Control 2	019.1		
<u>Cascade Summary</u>	of Res	ults for	<u>r south p</u>	ond 2 -	200.SRC	<u>X</u>
Storm Max	Max	Max	Max	Max	Max S	tatus
Event Level	Depth	Control	Overflow	Σ Outflow	Volume	
(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080 min Summer 174.13	38 0.138	6.1	0.0	6.1	19.7	ОК
15 min Winter 174.32	26 0.326	5 11.0	0.0	11.0	47.8	0 K
30 min Winter 174.44	18 0.448	13.2	0.0	13.2	66.6	O K
60 min Winter 174.56	54 0.564	15.0	0.0	15.0	85.2	0 K
120 min Winter 174.65	51 0.651	. 16.2	0.0	16.2	99.3	O K
180 min Winter 174.68	30 0.680	16.6	0.0	16.6	104.1	O K
240 min Winter 174.68	34 0.684	16.6	0.0	16.6	104.7	O K
360 min Winter 1/4.65	0.65	16.3	0.0	16.3	100.3	OK
480 Min Winter 174.62	24 U.624 29 N 580	15 3	0.0	15.0	94.9 89.2	O K O K
720 min Winter 174.55	55 0.555	5 14.8	0.0	14.8	83.8	0 K
960 min Winter 174.49	0.496	13.9	0.0	13.9	74.2	0 K
1440 min Winter 174.40	04 0.404	12.4	0.0	12.4	59.8	O K
2160 min Winter 174.31	4 0.314	10.7	0.0	10.7	46.0	O K
2880 min Winter 174.25	57 0.257	9.5	0.0	9.5	37.3	O K
4320 min Winter 174.19	90 0.190	7.8	0.0	7.8	27.3	0 K
5760 min Winter 174.15	52 0.152	6.7	0.0	6.7	21.8	O K
7200 min Winter 174.13	35 0.135	5.9	0.0	5.9	19.2	OK
8640 Min Winter 174.12	24 U.IZ4	E 3.2	0.0	5.2	16 5	OK
10000 min wincer 1/4.11	.0 0.110	· · · /	0.0	/	10.5	0 1
Storm	Rain	Flooded 1	Discharge	Overflow 1	Cime-Peak	
Event	(mm/hr)	Volume	Volume	Volume	(mins)	
		(m³)	(m³)	(m³)		
10080 min Summer	1.426	0.0	1039.1	0.0	5144	
15 min Winter	99.703	0.0	119.9	0.0	23	
60 min Winter	49.794	0.0	241 6	0.0	50 62	
120 min Winter	33.271	0.0	323.0	0.0	100	
180 min Winter	25.831	0.0	376.2	0.0	138	
240 min Winter	21.369	0.0	415.0	0.0	176	
360 min Winter	16.115	0.0	469.5	0.0	250	
480 min Winter	13.191	0.0	512.4	0.0	322	
600 min Winter	11.278	0.0	547.6	0.0	392	
/20 min Winter	9.913	0.0	577.6	0.0	460	
960 Min Winter 1440 min Winter	0.U/4 6 02/	0.0	627.2 701 8	0.0	594 852	
2160 min Winter	4.475	0.0	783.1	0.0	1236	
2880 min Winter	3.614	0.0	843.2	0.0	1612	
4320 min Winter	2.667	0.0	933.1	0.0	2340	
5760 min Winter	2.154	0.0	1005.7	0.0	3064	
7200 min Winter	1.826	0.0	1065.5	0.0	3752	
8640 min Winter	1.596	0.0	1117.5	0.0	4496	
10080 min Winter	1.426	0.0	1164.0	0.0	5144	

McCloy Consulting Limited		Page 3								
Mossley Mill										
Newtownabbey										
Co. Antrim		Mirro								
Date 14/10/2024 10:56	Designed by Remotemodel	Dcainago								
File cascade 200yr.CASX	Checked by	Diamage								
Innovyze	Source Control 2019.1									
<u>Cascade Rainfall Deta</u>	<u>Cascade Rainfall Details for south pond 2 - 200.SRCX</u>									
Rainfall Model Return Period (years) Region Engla M5-60 (mm) Ratio R	FSR Winter Storms Y 200 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8 15.600 Shortest Storm (mins) 0.250 Longest Storm (mins) 100	es 50 40 15 80								
Summer Storms	Yes Climate Change % +	37								
<u>Tim</u>	ne Area Diagram									
Tota	al Area (ha) 0.000									
Ti Fr	me (mins) Area om: To: (ha)									
	0 4 0.000									
Tin	ne Area Diagram									
Tota	al Area (ha) 0.253									
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)									
0 4 0.084	4 8 0.084 8 12 0.085									
©198	2-2019 Innovyze									

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:56	Designed by Remotemodel	Desinado
File cascade 200yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	

Cascade Model Details for south pond 2 - 200.SRCX

Storage is Online Cover Level (m) 175.500

Tank or Pond Structure

Invert Level (m) 174.000

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 140.0 0.500 160.0 1.000 170.0 1.500 180.0

Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 174.000

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 175.500 $\,$

McCloy Consulting I	imited						Page 1
Mossley Mill							
Newtownabbey							
Co. Antrim							Micco
Date $14/10/2024$ 10.	MILIU						
Eile accorde 200 mm	CACY		Charles	eu by Kem a bri	oceniodel	_	Drainage
File cascade 200yr.	CASX		Спеске	ya r			
Innovyze			Source	Control	2019.1		
Cascade	<u>Summary of</u>	E Res	sults f	or south	pond 3 ·	- 200.	SRCX
	Upstream		(Outflow To	Ov	erflow	То
	Structures						
south r	ond 2 - 200	.SRCX	south p	ond 4 - 20	0.SRCX	(Nor	ne)
south p	ond 1 - 200	.SRCX					
Storm	Max M	lax	Max	Max	Max	Max	Status
Event	Level De	pth (Control (Overflow Σ	Outflow V	Volume	
	(m) (m)	(1/s)	(1/s)	(1/s)	(m³)	
15 min Summer	170.963 0.	463	13.4	0.0	13.4	90.1	ОК
30 min Summer	171.156 0.	656	16.2	0.0	16.2	129.1	ΟK
60 min Summer	171.370 0.	870	18.9	0.0	18.9	174.3	O K
120 min Summer	171.587 1.	087	21.3	0.0	21.3	221.8	O K
180 min Summer	171.690 1.	190	22.3	0.0	22.3	245.0	O K
240 min Summer	171.736 1.	236	22.7	0.0	22.7	255.5	Flood Risk
360 min Summer	171.772 1.	272	23.1	0.0	23.1	263.7	Flood Risk
480 min Summer	171.786 1.	286	23.2	0.0	23.2	267.0	Flood Risk
600 min Summer	171.784 1.	284	23.2	0.0	23.2	266.6	Flood Risk
720 min Summer	171.773 1.	273	23.1	0.0	23.1	264.0	Flood Risk
960 min Summer	171.735 1.	235	22.7	0.0	22.7	255.3	Flood Risk
1440 min Summer	171.637 1.	137	21.8	0.0	21.8	233.0	O K
2160 min Summer	171.490 0.	990	20.2	0.0	20.2	200.3	0 K
2880 min Summer	171.364 0.	864	18.8	0.0	18.8	172.8	ОК
4320 min Summer	171.173 0.	673	16.5	0.0	16.5	132.8	O K
5760 min Summer	170.054.0	546	14./	0.0	12.2	106./	O K
8640 min Summer	170.954 U.	404 380	12.3 12.2	0.0	12.3 12.2	00.4 75 5	OK
	1/0.000 0.	505	12.2	0.0	12.2	10.0	0 1
	-		_, , ,	-· ·		-· -	
Sto	orm Ra	ain (h)	Flooded	Discharge	Overiiow	Time-F	eak
EVe		(/nr)	(m ³)	volume (m ³)	(m ³)	(min	5)
			(111)	(111)	(111)		
15 min	n Summer 99	.703	0.0	198.1	0.0		26
30 mii	n Summer 72	.140	0.0	287.6	0.0		40
60 mii	n Summer 49	.794	0.0	400.4	0.0		68
120 min	n Summer 33	.271	0.0	535.4	0.0		126
180 min	n Summer 25	.831	0.0	623.7	0.0		182
240 min	n Summer 21	.369	0.0	688.1	0.0		224
360 min	n Summer 16	.115	0.0	778.5	0.0		284
480 min	n Summer 13	.191	0.0	849.7	0.0		346
600 min	n Summer 11	.278	0.0	908.1	0.0		414
720 min	n Summer 9	.913	0.0	957.9	0.0		482
960 mii	n Summer 8	.074	0.0	1040.2	0.0		616
1440 min	n Summer 6	.024	0.0	1163.6	0.0	-	880
2160 min	n Summer 4	.475	0.0	1299.0	0.0	1	.260
2880 mii	1 Summer 3	.614	0.0	1598.8	0.0	1	.024 2244
4320 mli	i summer 2	151	0.0	1660 F	0.0	2	2064
7200 min	Summer 1	826	0.0	1767 7	0.0	3	3768
8640 min	1 Summer 1	.596	0.0	1853.9	0.0	4	496
			0.0		0.0	-	

McCloy Cons	sulting Li	imited						Page 2
Mossley Mi	11							
Newtownabbe	∋у							
Co. Antrim	-							Micco
Date 14/10,	/2024 10:5	56		Designe	ed by Rem	otemodel		
File cascad	de 200vr.(CASX		Checked	l bv			Drainage
Innowyzo Source Control 2010 1								
Source concror 2019.1								
	Cascade	lummary	of Re	sults fo	or south	nond 3 -	200	SBCX
	<u>cascade</u> c	<u>ummar y</u>	OT NE	SUILS I	JI SOUCH		200.	<u>BIRCK</u>
	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Control	Overflow Σ	Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10000		1 - 0 - 0			0.0		65 0	
10080	min Summer	170.837	0.337	11.2	0.0	11.2	65.2	O K
15	min Winter	171.018	0.518	14.3	0.0	14.3	101.1	O K
30	min Winter	171.232	0./32	17.2	0.0	17.2	145.0	OK
60	min Winter	171.4/1	0.9/1	20.0	0.0	20.0	196.2	U K
120	min Winter	171.020	1.216	22.5	0.0	22.5	250.9	Flood Risk
180	min Winter	171.000	1 202	23.7	0.0	23.7	2/8.6	Flood Risk
240	min Winter	171 022	1 422	24.2	0.0	24.2	291.9	Flood Risk
300	min Winter	171 030	1,422	24.4	0.0	24.4	290.0	Flood Risk
400 600	min Winter	171.950	1 /16	24.5	0.0	24.5	297 5	Flood Risk
720	min Winter	171 890	1 390	24.4	0.0	24.4	291 2	Flood Risk
960	min Winter	171 818	1 318	23.5	0.0	23.5	274 4	Flood Risk
1440	min Winter	171 655	1 155	23.3	0.0	23.5	237 1	O K
2160	min Winter	171.438	0.938	19.7	0.0	19.7	188.9	0 K
2880	min Winter	171.269	0.769	17.7	0.0	17.7	152.8	0 K
4320	min Winter	171.044	0.544	14.7	0.0	14.7	106.2	O K
5760	min Winter	170.911	0.411	12.5	0.0	12.5	79.8	O K
7200	min Winter	170.826	0.326	11.0	0.0	11.0	63.1	O K
8640	min Winter	170.769	0.269	9.8	0.0	9.8	51.8	O K
10080	min Winter	170.729	0.229	8.8	0.0	8.8	44.0	O K
	Sto	rm	Rain	Flooded	Discharge	Overflow	Time-1	Peak
	Eve	nt	(mm/hr)	Volume	Volume	Volume	(min	s)
				(m³)	(m³)	(m³)		

	Event	(mm/hr)	Volume (m³)	Volume (m³)	Volume (m³)	(mins)	
10080	min Summer	1.426	0.0	1930.6	0.0	5240	
15	min Winter	99.703	0.0	222.1	0.0	26	
30	min Winter	72.140	0.0	322.4	0.0	40	
60	min Winter	49.794	0.0	448.6	0.0	68	
120	min Winter	33.271	0.0	599.8	0.0	124	
180	min Winter	25.831	0.0	698.7	0.0	180	
240	min Winter	21.369	0.0	770.8	0.0	232	
360	min Winter	16.115	0.0	872.1	0.0	296	
480	min Winter	13.191	0.0	951.9	0.0	368	
600	min Winter	11.278	0.0	1017.3	0.0	442	
720	min Winter	9.913	0.0	1073.0	0.0	516	
960	min Winter	8.074	0.0	1165.1	0.0	658	
1440	min Winter	6.024	0.0	1303.4	0.0	930	
2160	min Winter	4.475	0.0	1455.0	0.0	1320	
2880	min Winter	3.614	0.0	1566.8	0.0	1684	
4320	min Winter	2.667	0.0	1733.5	0.0	2420	
5760	min Winter	2.154	0.0	1868.8	0.0	3120	
7200	min Winter	1.826	0.0	1979.9	0.0	3824	
8640	min Winter	1.596	0.0	2076.5	0.0	4504	
10080	min Winter	1.426	0.0	2162.7	0.0	5240	
		<u>@1 9 9 ′</u>	2-2019 T	nnouuzo			
		ST 707		UV y 4 E			

McClov Consulting Limited	1	Page 3
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:56	Designed by Remotemodel	
File cascade 200yr.CASX	Checked by	Drainage
Innovyze	Source Control 2019.1	
Cascade Rainfall Det	ails for south pond 3 - 200.SRCX	
Rainfall Model	FSR Winter Storms Yes	5
Reculli Period (years) Region Engla	and and Wales Cv (Winter) 0.840)
M5-60 (mm)	15.600 Shortest Storm (mins) 15	5
Ratio R	0.250 Longest Storm (mins) 1008()
Summer Storms	Yes Climate Change % +3	/
<u> </u>	ne Area Diagram	
Tota	al Area (ha) 0.497	
Time (mins) Area Ti From: To: (ha) Fr	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)	
0 4 0.165	4 8 0.166 8 12 0.166	
©198	32-2019 Innovyze	

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:56	Designed by Remotemodel	Desinado
File cascade 200yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	

Cascade Model Details for south pond 3 - 200.SRCX

Storage is Online Cover Level (m) 172.000

Tank or Pond Structure

Invert Level (m) 170.500

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 190.0 0.500 200.0 1.000 220.0 1.500 240.0

Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 170.500

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 172.000

McCloy Con	sulting L	imited						Page 1	
Mossley Mi	11								
Newtownabb	еу								
Co. Antrim								Micco	
Date 14/10	/2024 10:	57		Designe	ed by Rem	otemode	1		
File cascade 200vr.CASX Checked by								Dialinage	
Innovvze	1			Source	Control	2019.1			
- 1 -									
	<u>Cascade</u> S	Summary	of Re	sults f	or south	pond 4	- 200.	SRCX	
		_				-			
		Upstream		(Outflow To	Ov	erflow	То	
	S	tructure	s						
south pond 3 - 200.SRCX south pond 5 - 200.SRCX (None) south pond 2 - 200.SRCX south pond 1 - 200.SRCX									
	Storm	Max	Max	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control (Overflow Σ	Outflow	Volume		
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)		
15	min Summer	163 350	0 350	11 5	0 0	11 5	51 7	O K	
30	min Summer	163.500	0.500	14.0	0.0	14.0	74.9	0 K	
60	min Summer	163.675	0.675	16.5	0.0	16.5	103.5	O K	
120	min Summer	163.877	0.877	19.0	0.0	19.0	138.0	O K	
180	min Summer	163.999	0.999	20.3	0.0	20.3	159.8	O K	
360	min Summer	164.183	1.183	21.2	0.0	21.2	193.5	O K O K	
480	min Summer	164.240	1.240	22.8	0.0	22.8	204.3	Flood Risk	
600	min Summer	164.257	1.257	22.9	0.0	22.9	207.5	Flood Risk	
720	min Summer	164.260	1.260	23.0	0.0	23.0	208.0	Flood Risk	
960	min Summer	164.253	1.253	22.9	0.0	22.9	206./	Flood Risk	
2160	min Summer	164.126	1.126	22.3	0.0	22.5	182.9	O K	
2880	min Summer	164.029	1.029	20.7	0.0	20.7	165.1	O K	
4320	min Summer	163.848	0.848	18.6	0.0	18.6	133.1	O K	
5760	min Summer	163.708	0.708	16.9 15 5	0.0	16.9 15 5	109.1 91 2	O K	
7200	MIII Ounmer	103.001	0.001	10.0	0.0	10.0	91.2	0 R	
	Sta		Dain	Flooded	Dischange	Orromflour	Mimo_T		
	Eve	rm nt	(mm/hr)	Volume	Volume	Volume	(min	eak s)	
				(m ³)	(m ³)	(m³)	•	- •	
	1	C	00 700	0 0	000 4	0 0		100	
	15 min 30 min	Summer	99.703 72.140	0.0	238.4 346.5	0.0		137	
	60 min	Summer	49.794	0.0	483.6	0.0		174	
	120 min	Summer	33.271	0.0	646.9	0.0		226	
	180 min	Summer	25.831	0.0	753.7	0.0		268	
	240 min 360 min	Summer	21.369	0.0	831.5 940 7	0.0		300 376	
	480 min	Summer	13.191	0.0	1026.9	0.0		486	
	600 min	Summer	11.278	0.0	1097.4	0.0		580	
	720 min	Summer	9.913	0.0	1157.6	0.0		636	
	960 min 1440 min	Summer	8.074	0.0	1256.9	0.0	1	/56	
	2160 min	Summer	4.475	0.0	1570.4	0.0	1	.376	
	2880 min	Summer	3.614	0.0	1690.9	0.0	1	752	
	4320 min	Summer	2.667	0.0	1870.4	0.0	2	2472	
	5760 min	Summer	2.154	0.0	2017.2	0.0	3	3184	
	/200 min	summer	1.020	0.0	213/.0	0.0	3	טכסמ	
			©198	2-2019	Innovyze				

McCloy Consulting Li	mited						Page 2
Mossley Mill							
Newtownabbey							
Co. Antrim							Micco
Date 14/10/2024 10.5	7		Designe	d by Remo	otemodel		
File cascade 200yr C	ASX		Checked	l by	o como do 1		Drainage
Innowyze	- 10/1		Source	$\frac{1}{Control}$	2010 1		
11110 V y 2 e			Source	CONCLOT 2	2019.1		
Cascade Summary of Results for south pond 4 - 200.SRCX							
							-
Storm	Max	Max	Max Control (Max	Max Outflow 1	Max	Status
Evenc	(m)	(m)	(1/s)	(1/s)	(1/s)	(m ³)	
	(,	(,	(1)0)	(1)0)	(1) 57	()	
8640 min Summer	163.518	0.518	14.3	0.0	14.3	77.8	O K
10080 min Summer	163.451	0.451	13.2	0.0	13.2	67.2	O K
15 min Winter	163.392	0.392	12.2	0.0	12.2	57.9	0 K
30 min Winter	163.556	0.556	14.8	0.0	14.8	83.9	O K
60 min Winter	163 071	0.749	1/.4	0.0	1/.4 20 0	154 G	OK
120 min Winter	16/ 100	U.9/1 1 106	∠U.U 21 4	0.0	∠U.U 21 4	170 1	U K
240 min Winter	16/ 107	1 107	∠⊥.4 22 /	0.0	∠⊥.4 22 /	196 1	0 K
360 min Winter	164 310	1,310	22.4	0.0	22.4	10.1 217 5 F	lood Risk
480 min Winter	164.380	1.380	2.4.1	0.0	2.4.1	231.1 F	lood Risk
600 min Winter	164.409	1.409	24.3	0.0	24.3	236.9 F	lood Risk
720 min Winter	164.411	1.411	24.4	0.0	24.4	237.2 F	lood Risk
960 min Winter	164.390	1.390	24.2	0.0	24.2	233.2 F	lood Risk
1440 min Winter	164.314	1.314	23.5	0.0	23.5	218.3 F	lood Risk
2160 min Winter	164.151	1.151	21.9	0.0	21.9	187.5	O K
2880 min Winter	163.990	0.990	20.2	0.0	20.2	158.0	O K
4320 min Winter	163.732	0.732	17.2	0.0	17.2	113.2	O K
5760 min Winter	163.562	0.562	14.9	0.0	14.9	84.9	O K
7200 min Winter	163.446	0.446	13.1	0.0	13.1	66.4	O K
8640 min Winter	163.366	0.366	11.7	0.0	11.7	53.9	O K
10080 min Winter	163.309	0.309	10.6	0.0	10.6	45.1	0 K
Stor	m	Rain	Flooded	Discharge	Overflow	Time-Pe	ak
Even	t	(mm/hr)	Volume	Volume	Volume	(mins)	
			(m³)	(m³)	(m³)		
8640 min	Summer	1.596	0.0	2241.2	0.0	45	92
10080 min	Summer	1.426	0.0	2333.7	0.0	53	12
15 min	Winter	99.703	0.0	267.4	0.0	1	14
30 min	Winter	72.140	0.0	388.5	0.0	1	44
60 min	Winter	49.794	0.0	541.9	0.0	1	82
120 min	Winter	33.271	0.0	724.8	0.0	2	36
180 min	Winter	25.831	0.0	844.3	0.0	2	80
240 min	Winter	21.369	0.0	931.5	0.0	3	00 7 Q
360 Min	Winter Winter	13 101	0.0	1150 2	0.0	3	00 82
400 min 600 min	Winter	11 278	0.0	1229 A	0.0	4	5∠ 86
720 min	Winter	9,913	0.0	1296 7	0.0	5	74
960 min	Winter	8.074	0.0	1407.9	0.0	7	82
1440 min	Winter	6.024	0.0	1574.8	0.0	10	46
2160 min	Winter	4.475	0.0	1758.9	0.0	14	36
2880 min	Winter	3.614	0.0	1894.0	0.0	18	12
4320 min	Winter	2.667	0.0	2095.4	0.0	25	20
5760 min	Winter	2.154	0.0	2259.3	0.0	32	32
7200 min	Winter	1.826	0.0	2393.6	0.0	39	20
8640 min	Winter	1.596	0.0	2510.4	0.0	46	00
10080 min	Winter	⊥.426	0.0	2614.3	0.0	53	36
		©198	2-2019	Innovyze			

McClov Consulting Limited		Page 3					
Mossley Mill							
Newtownabbey							
Co. Antrim		Micco					
Date 14/10/2024 10:57	Designed by Remotemodel						
File cascade 200yr.CASX	Checked by	Drainage					
Innovyze	Source Control 2019.1						
Cascade Rainfall Det	ails for south pond 4 - 200.SRCX						
Rainfall Model	FSR Winter Storms Ye	s					
Region Engla	and and Wales Cv (Summer) 0.75	10					
M5-60 (mm)	15.600 Shortest Storm (mins) 1	.5					
Ratio R	0.250 Longest Storm (mins) 1008	30					
Summer Storms	res Crimate Change & +3	57					
Tin	ne Area Diagram						
Tota	al Area (ha) 0.225						
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)						
0 4 0.075	4 8 0.075 8 12 0.075						
@1000_0010_T							
©198	32-2019 Innovyze						

McCloy Consulting Limited		Page 4
Mossley Mill		
Newtownabbey		
Co. Antrim		Micco
Date 14/10/2024 10:57	Designed by Remotemodel	Desinado
File cascade 200yr.CASX	Checked by	Diamage
Innovyze	Source Control 2019.1	

Cascade Model Details for south pond 4 - 200.SRCX

Storage is Online Cover Level (m) 164.500

Tank or Pond Structure

Invert Level (m) 163.000

Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 140.0 0.500 160.0 1.000 180.0 1.500 200.0

Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 163.000

<u>Weir Overflow Control</u>

Discharge Coef 0.544 Width (m) 0.500 Invert Level (m) 164.500 $\,$

McCloy Consulting Limited					Page 1
Mossley Mill					
Newtownabbey					
Co. Antrim					Micco
Date 14/10/2024 10:57	Designe	d by Rem	otemodel		
File cascade 200vr.CASX	Checked	lbv			Drainage
	Source	Control (2019 1		
	bource	CONCLOT .	2019.1		
Cascade Summary of F	esults fo	or south	pond 5 -	200 SR	CX
	CDUICD IC	<u>Ji Jouch</u>		200.01	
Upstrea	m C	utflow To	Overflow T	'o	
Structur	es				
	200 0000		()]	`	
south pond 3 -	200.SRCX	(None)	(None	2)	
south pond 2 -	200.SRCX				
south pond 1 -	200.SRCX				
Storm Max Ma	ix Max	Max	Max Noviteland	Max :	Status
Event Level De	(1/s)	(1/s)	2 Outriow	(m ³)	
()	., (1,5,	(1)0)	(1)0)	()	
15 min Summer 156.956 0.	.56 11.0	0.0	11.0	40.8	ОК
30 min Summer 156.997 0.1	.97 13.3	0.0	13.3	51.6	O K
60 min Summer 157.106 0 120 min Summer 157.298 0	14.9 198 15 9	0.0	14.9	80.4 132 0	OK
180 min Summer 157.462 0.	562 16.0	0.0	16.0	176.4	0 K
240 min Summer 157.597 0.	97 16.0	0.0	16.0	213.4	0 K
360 min Summer 157.799 0.	999 16.0	0.0	16.0	269.8	0 K
480 min Summer 157.984 1.	.84 16.0	0.0	16.0	321.9	O K
600 min Summer 158.118 1.1	318 16.0	0.0	16.0	360.1	OK
960 min Summer 158,191 1.	91 16.0 167 16.0	0.0	16.0	301.U 403 0	OK
1440 min Summer 158.292 1.	192 16.0	0.0	16.0	410.0	0 K
2160 min Summer 158.170 1.	16.0	0.0	16.0	374.9	O K
2880 min Summer 157.958 1.	.58 16.0	0.0	16.0	314.3	0 K
4320 min Summer 157.589 0.	789 16.0	0.0	16.0	211.5	OK
7200 min Summer 157.196 0.	396 15.6	0.0	15.6	104.6	OK
Storm Rain	Flooded	Discharge	Overflow 1	[ime-Peal	k
Event (mm/h:) Volume	Volume	Volume	(mins)	
	(m³)	(m³)	(m³)		
15 min Summer 99.7	0.0	259.1	0.0	17:	1
30 min Summer 72.1	0.0	377.6	0.0	222	2
60 min Summer 49.7	0.0	530.3	0.0	322	2
120 min Summer 33.2 180 min Summer 25.9	×1 0.0	/U9.6 826 0	0.0	452	2
240 min Summer 21.3	59 0.0	912.3	0.0	634	4
360 min Summer 16.1	.5 0.0	1032.3	0.0	768	8
480 min Summer 13.1	0.0	1126.8	0.0	904	4
600 min Summer 11.2	0.0	1204.3	0.0	992	2
720 min Summer 9.9	.3 0.0	1270.2	0.0	1068	8
1440 min Summer 60	4 0.0	1542 2	0.0	151,	0 4
2160 min Summer 4.4	75 0.0	1725.2	0.0	1908	8
2880 min Summer 3.6	.4 0.0	1857.5	0.0	2252	2
4320 min Summer 2.6	0.0	2053.7	0.0	2848	8
5760 min Summer 2.1	54 0.0	2216.6	0.0	3488	8
/200 min Summer 1.8	0.0	2348.2	U.U	4128	0
				120	

McCloy Consulting Limi	ted					Page 2
Mossley Mill						_
Newtownabbey						14 A.
Co. Antrim						Micco
Date 14/10/2024 10:57		Designe	d by Remo	otemodel		
File cascade 200vr.CAS	x	Checked by				
Innovyze		Source	Control 2	2019.1		
		504100				
Cascade Sum	mary of Res	sults fo	or south p	oond 5 -	200.SRCX	
	-		-			
Storm	Max Max	Max	Max	Max	Max Sta	itus
Event L	evel Depth	Control (Overflow Σ	Outflow V	Volume	
	(m) (m)	(1/5)	(1/5)	(1/5)	(m ²)	
8640 min Summer 15	7.100 0.300	14.9	0.0	14.9	79.0	O K
10080 min Summer 15	7.038 0.238	14.1	0.0	14.1	62.5	ОК
15 min Winter 15 30 min Winter 15	6.966 U.166 7 025 0 225	11./ 13.9	0.0	11./ 13.9	43.5	OK
60 min Winter 15	7.166 0.366	15.4	0.0	15.4	96.5	ОК
120 min Winter 15	7.416 0.616	16.0	0.0	16.0	163.8	ОК
180 min Winter 15	7.631 0.831	16.0	0.0	16.0	223.1	O K
240 min Winter 15	7.818 1.018	16.0	0.0	16.0	275.0	ОК
480 min Winter 15	8.300 1.500	16.0	0.0	16.0	412.6	OK
600 min Winter 15	8.404 1.604	16.0	0.0	16.0	442.6	0 K
720 min Winter 15	8.473 1.673	16.0	0.0	16.0	462.8	0 K
960 min Winter 15	8.550 1.750	16.0	0.0	16.0	485.7 Flood	l Risk
1440 min Winter 15 2160 min Winter 15	8.5/6 1.//6 8.424 1.624	16.0 16.0	0.0	16.0 16.0	493.3 Elooc	I Risk
2880 min Winter 15	8.180 1.380	16.0	0.0	16.0	377.7	0 K
4320 min Winter 15	7.491 0.691	16.0	0.0	16.0	184.5	O K
5760 min Winter 15	7.181 0.381	15.5	0.0	15.5	100.5	O K
7200 min Winter 15	7.044 0.244	14.1	0.0	14.1	64.0	ОК
8640 min Winter 15 10080 min Winter 15	6.965 0.165	12.9	0.0	12.9	47.8	OK
	0.000 0.100	11.0	0.0	11.0	10.1	0 10
Q to a surrow	D a i a	5 1	Discharge	0	minus Daala	
Storm	Rain (mm/hr)	Flooded	Volume	Volume	Time-Peak	
Event	(1111)	(m ³)	(m ³)	(m ³)	(11113)	
8640 min Su:	mmer 1.596	0.0	2462.4	0.0	4776	
15 min Wi	nter 99.703	0.0	2363.0 290.9	0.0	178	
30 min Wi	nter 72.140	0.0	423.7	0.0	253	
60 min Wi	nter 49.794	0.0	594.3	0.0	356	
120 min Wi	nter 33.271	0.0	795.1	0.0	506	
180 MIN W1 240 min Wi	nter 23.831 nter 21.369	0.0	926.5 1022.2	0.0	6⊥8 714	
360 min Wi	nter 16.115	0.0	1156.5	0.0	864	
480 min Wi	nter 13.191	0.0	1262.4	0.0	944	
600 min Wi	nter 11.278	0.0	1349.2	0.0	1024	
/20 min Wi 960 min Wi	nter 9.913 nter 8.074	0.0	1423.0 1545 0	0.0	1100 1252	
1440 min Wi	nter 6.024	0.0	1727.6	0.0	1550	
2160 min Wi	nter 4.475	0.0	1932.4	0.0	1976	
2880 min Wi	nter 3.614	0.0	2080.7	0.0	2364	
4320 min Wi 5760 min Wi	nter 2.667	0.0	2301.0 2482 P	0.0	2916	
7200 min Wi	nter 1.826	0.0	2402.0	0.0	4088	
8640 min Wi	nter 1.596	0.0	2758.3	0.0	4624	
10080 min Wi	nter 1.426	0.0	2871.7	0.0	5360	
	©198	2-2019	Innovyze			

McClov Consulting Limited		Page 3					
Mossley Mill							
Newtownabbey							
Co. Antrim		Micco					
Date 14/10/2024 10:57	Designed by Remotemodel						
File cascade 200yr.CASX	Checked by	Drainage					
Innovyze	Source Control 2019.1						
Cascade Rainfall Det	ails for south pond 5 - 200.SRCX						
Rainfall Model	FSR Winter Storms Ye	s					
Reculli Period (years) Region Engla	and and Wales Cv (Winter) 0.84	0					
M5-60 (mm)	15.600 Shortest Storm (mins) 1	5					
Ratio R	0.250 Longest Storm (mins) 1008	0					
Summer Storms	res Crimate Change & +5	1					
Tin	ne Area Diagram						
Tota	al Area (ha) 0.129						
Time (mins) Area Ti From: To: (ha) Fro	me (mins) Area Time (mins) Area om: To: (ha) From: To: (ha)						
0 4 0.043	4 8 0.043 8 12 0.043						
©198	32-2019 Innovyze						

McCloy Consul	lting Lin	mited					Page 4
Mossley Mill							
Newtownabbey							
Co. Antrim							Micco
Date 14/10/20	Date 14/10/2024 10.57 Designed by Remotemodel						
File cascade	200vr.C	ASX	Checke	ed by			Drainage
Innovyze	20091.01		Source	- Control	2019 1		
IIIIOvyze			DOULCE		2019.1		
	<u>Cascade</u>	Model De	tails for	<u>south p</u>	ond 5 - 20	0.SRCX	
		Other states in the		T]	() 150 000		
		Storage is	Unline Cov	ver Level	(m) 158.800		
		<u>Ta</u>	<u>nk or Pon</u>	d Structu	ire		
		Ir	vert Level	(m) 156.8	00		
	Depth (m)	Area (m²)	Depth (m)	Area (m²)	Depth (m) A	Area (m²)	
	0.000	260.0	1.000	280.0	2.000	300.0	
	0.500	270.0	1.500	290.0			
	H	Hydro-Brai	ke® Optim	um Outflo	ow Control		
		T	Init Refere	nce MD-SHE	-0165-1600-3	2000-1600	
		De	esign Head	(m)	0100 1000 2	2.000	
		Desi	.gn Flow (l	/s)		16.0	
			Flush-F	lom	Ca	alculated	
			Object.	ive Minim	ise upstream	n storage	
		c	Applicat	lon ble		Suriace	
			Diameter (1	mm)		165	
		Thy	vert. Level	(m)		156.800	
	Minimum O	utlet Pipe	Diameter (1	(, mm)		225	
	Suggest	ed Manhole	Diameter (mm)		1500	
		Control	Points	Head (n	n) Flow (l/s	;)	
	De	esign Point	(Calculate	ed) 2.00	16.	0	
		-	Flush-Fl	.o [™] 0.57	19 16.	0	
			Kick-Fl	.o® 1.21	.6 12.	6	
	Me	ean Flow ove	er Head Ran	ige	- 14.	0	
The hydrologi	ical calcu	lations hav	ve been bas	ed on the	Head/Discha	rge relatio	onship for the
Hydro-Brake®	Optimum a	s specified	1. Should	another ty	pe of contro	ol device d	other than a
Hydro-Brake (Optimum® b	e utilised	then these	storage r	outing calcu	ulations wi	ll be
Invariation							
Depth (m) Fl	Low (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)
0.100	5.9	1.200	12.9	3.000	19.4	7.000	29.1
0.200	13.4	1.400	13.5	3.500	20.9	7.500	30.1
0.300	14.9	1.600	14.4	4.000	22.3	8.000	31.1
0.400	15.6	1.800	15.2	4.500	23.6	8.500	32.0
0.500	15.9	2.000	16.0	5.000	24.8	9.000	32.9
0.600	16.0	2.200	10./	5.500	25.9	9.500	33.8
1 000	12./ 14 g	2.400 2.600	1 × 1	6.000 6.500	27.U 28 1		
1.000	± 1 • 0	2.000	-0, - L	0.000	20.1		
<u>Weir Overflow Control</u>							
I	Discharge	Coef 0.544	Width (m)	0.500 Inve	ert Level (m	n) 158.800	
		C	1982-2019) Innovyz	e		

Appendix C

Drainage Layout Drawings

	NOTES				
$\langle \rangle \rangle $	GENERAL 1. THIS DRAWING	SHALL NOT BE US	ED FOR		
	2. THIS DRAWING	'URPOSES. S SHALL BE REVIEW	ED IN		
WATERCOURSE PCC HEADWALL TYPICAL DETAIL	CONJUNCTION W DRAWINGS.	2. THIS DRAWING SHALL BE REVIEWED IN CONJUNCTION WITH ALL RELEVANT ENGINEERING DESIGN DRAWINGS.			
EENFIELD RATE	3. THIS DRAWING	; IS NOT TO BE SC	ALED FROM.		
	ALL EXISTING SE	RTAKERS IN REGARI	D TO LOCATING ADJACENT TO		
	THE SITE OF TH	- WORK			
	LEGEND SITE BOUNDARY				
		HAR DIDE			
	PROPOSED DRAIT	IAGE PIPE			
	PROPOSED SWAL	ES			
	UNDESIGNATED V	ATERCOURSE			
	PROPOSED TRAC	K DRAINAGE PIPE			
URSE IDWALI					
. DETAIL RATE)					
		_			
	4 IB PD 01/11/	24 REVISED LAYOUT			
	3 IB PD 03/10/ 2 IB MR 22/05/	24 REVISED LAYOUT 24 FOR PLANNING			
	1 IB PD 12/05/	23 FOR REVIEW			
	STATUS	FOR REVIE	W		
			-		
			у –		
	Consi	ulting			
	F: 028 9084 1525 E: info@mccloyconsulting.com		Carnmoney Road North Newtownabbey		
	PROJECT		CO. Antrim, B136 SQA		
	RIAC	KHILLOOK BESS	KEITH		
			1111		
	BLACKHILL	OCK FLEX	POWER LTD		
Rosenali Steading	PROPOS	SED DRAINAGE	E LAYOUT		
	GENE	RAL ARRANG	EMENT		
	SCALE	ORIGINAL SIZE			
	1:1000	CHECKED	A1 DATE		
	IB	PD	06/11/2024		
	M03291-03	DWG_100	ISSUE NU.		

INDICATIVE HEADWALL DETAIL

